Estimating Individual Cross-Section Coefficients from the Random Coefficient Regression Model
Marketing researchers frequently encounter cross-sectional, time-series data when developing sales response models. One approach to analyzing such data is to estimate a separate OLS equation for each cross-section. Alternatively, one could pool the data from all cross-sections to estimate a single s...
Gespeichert in:
Veröffentlicht in: | Journal of the Academy of Marketing Science 1993-01, Vol.21 (1), p.45-51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marketing researchers frequently encounter cross-sectional, time-series data when developing sales response models. One approach to analyzing such data is to estimate a separate OLS equation for each cross-section. Alternatively, one could pool the data from all cross-sections to estimate a single set of response coefficients for all cross-sections. However, when data are pooled, the responsiveness of individual cross-sections cannot be evaluated. In this note, we introduce a version of the random coefficient model that can be used to estimate separate sets of response coefficients for each cross-section, thereby circumventing the assumption that coefficients are homogeneous in all cross-sections. We demonstrate this approach with an empirical model that relates brand level sales to price and advertising. |
---|---|
ISSN: | 0092-0703 1552-7824 |
DOI: | 10.1177/0092070393211006 |