A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range

This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2019-01, Vol.54 (7), p.1862
Hauptverfasser: Marin, Jorge, Sacco, Elisa, Vergauwen, Johan, Gielen, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1862
container_title IEEE journal of solid-state circuits
container_volume 54
creator Marin, Jorge
Sacco, Elisa
Vergauwen, Johan
Gielen, Georges
description This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.
doi_str_mv 10.1109/JSSC.2019.2911888
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2248653201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248653201</sourcerecordid><originalsourceid>FETCH-proquest_journals_22486532013</originalsourceid><addsrcrecordid>eNqNj8tKw0AYhQdRMF4ewN0PrhPnz8VOliZaqlQiSUFBpIz2Tzsllzoz6dqla_VBfAYfpU9iFB_A1TmH73DgMHaE3EPk8clVUaSezzH2_BhRCLHFHIwi4eIguNtmDuco3NjnfJftGbPsYxgKdNjHGeTtY2csJMnNeOwm0tAM-lHh3g9bXXeVhKxW1tLsoYb0OisgJ6OMVWuCghrTarhsLOlSPhHcKruAkZov4Fyr0v5WK0VNj7I1aZCweX0LOXx9ppuXdxxEPw4mVK9IS9tpglw2czpgO6WsDB3-6T47Hl5M0pG70u1zR8ZOl22nmx5NfT8Up1HQPw_-1_oGU4xdbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248653201</pqid></control><display><type>article</type><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><source>IEEE Electronic Library (IEL)</source><creator>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</creator><creatorcontrib>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</creatorcontrib><description>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2911888</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Analog circuits ; CMOS ; Cutting ; Digital filters ; Digital to analog conversion ; Digital to analog converters ; Drift ; Interface stability ; Phase detectors ; Phase locked loops ; Power consumption ; Resilience ; Sensors ; Transfer functions ; Voltage controlled oscillators</subject><ispartof>IEEE journal of solid-state circuits, 2019-01, Vol.54 (7), p.1862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marin, Jorge</creatorcontrib><creatorcontrib>Sacco, Elisa</creatorcontrib><creatorcontrib>Vergauwen, Johan</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><title>IEEE journal of solid-state circuits</title><description>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</description><subject>Analog circuits</subject><subject>CMOS</subject><subject>Cutting</subject><subject>Digital filters</subject><subject>Digital to analog conversion</subject><subject>Digital to analog converters</subject><subject>Drift</subject><subject>Interface stability</subject><subject>Phase detectors</subject><subject>Phase locked loops</subject><subject>Power consumption</subject><subject>Resilience</subject><subject>Sensors</subject><subject>Transfer functions</subject><subject>Voltage controlled oscillators</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNj8tKw0AYhQdRMF4ewN0PrhPnz8VOliZaqlQiSUFBpIz2Tzsllzoz6dqla_VBfAYfpU9iFB_A1TmH73DgMHaE3EPk8clVUaSezzH2_BhRCLHFHIwi4eIguNtmDuco3NjnfJftGbPsYxgKdNjHGeTtY2csJMnNeOwm0tAM-lHh3g9bXXeVhKxW1tLsoYb0OisgJ6OMVWuCghrTarhsLOlSPhHcKruAkZov4Fyr0v5WK0VNj7I1aZCweX0LOXx9ppuXdxxEPw4mVK9IS9tpglw2czpgO6WsDB3-6T47Hl5M0pG70u1zR8ZOl22nmx5NfT8Up1HQPw_-1_oGU4xdbQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Marin, Jorge</creator><creator>Sacco, Elisa</creator><creator>Vergauwen, Johan</creator><creator>Gielen, Georges</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><author>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22486532013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analog circuits</topic><topic>CMOS</topic><topic>Cutting</topic><topic>Digital filters</topic><topic>Digital to analog conversion</topic><topic>Digital to analog converters</topic><topic>Drift</topic><topic>Interface stability</topic><topic>Phase detectors</topic><topic>Phase locked loops</topic><topic>Power consumption</topic><topic>Resilience</topic><topic>Sensors</topic><topic>Transfer functions</topic><topic>Voltage controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin, Jorge</creatorcontrib><creatorcontrib>Sacco, Elisa</creatorcontrib><creatorcontrib>Vergauwen, Johan</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marin, Jorge</au><au>Sacco, Elisa</au><au>Vergauwen, Johan</au><au>Gielen, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>54</volume><issue>7</issue><spage>1862</spage><pages>1862-</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><abstract>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSSC.2019.2911888</doi></addata></record>
fulltext fulltext
identifier ISSN: 0018-9200
ispartof IEEE journal of solid-state circuits, 2019-01, Vol.54 (7), p.1862
issn 0018-9200
1558-173X
language eng
recordid cdi_proquest_journals_2248653201
source IEEE Electronic Library (IEL)
subjects Analog circuits
CMOS
Cutting
Digital filters
Digital to analog conversion
Digital to analog converters
Drift
Interface stability
Phase detectors
Phase locked loops
Power consumption
Resilience
Sensors
Transfer functions
Voltage controlled oscillators
title A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20BBPLL-Based%200.18-%5BFormula%20Omitted%5Dm%20CMOS%20Resistive%20Sensor%20Interface%20With%20High%20Drift%20Resilience%20Over%20a%20%E2%88%9240%20%C2%B0C%E2%80%93175%20%C2%B0C%20Temperature%20Range&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Marin,%20Jorge&rft.date=2019-01-01&rft.volume=54&rft.issue=7&rft.spage=1862&rft.pages=1862-&rft.issn=0018-9200&rft.eissn=1558-173X&rft_id=info:doi/10.1109/JSSC.2019.2911888&rft_dat=%3Cproquest%3E2248653201%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248653201&rft_id=info:pmid/&rfr_iscdi=true