A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range
This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma desig...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2019-01, Vol.54 (7), p.1862 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1862 |
container_title | IEEE journal of solid-state circuits |
container_volume | 54 |
creator | Marin, Jorge Sacco, Elisa Vergauwen, Johan Gielen, Georges |
description | This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area. |
doi_str_mv | 10.1109/JSSC.2019.2911888 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2248653201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2248653201</sourcerecordid><originalsourceid>FETCH-proquest_journals_22486532013</originalsourceid><addsrcrecordid>eNqNj8tKw0AYhQdRMF4ewN0PrhPnz8VOliZaqlQiSUFBpIz2Tzsllzoz6dqla_VBfAYfpU9iFB_A1TmH73DgMHaE3EPk8clVUaSezzH2_BhRCLHFHIwi4eIguNtmDuco3NjnfJftGbPsYxgKdNjHGeTtY2csJMnNeOwm0tAM-lHh3g9bXXeVhKxW1tLsoYb0OisgJ6OMVWuCghrTarhsLOlSPhHcKruAkZov4Fyr0v5WK0VNj7I1aZCweX0LOXx9ppuXdxxEPw4mVK9IS9tpglw2czpgO6WsDB3-6T47Hl5M0pG70u1zR8ZOl22nmx5NfT8Up1HQPw_-1_oGU4xdbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2248653201</pqid></control><display><type>article</type><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><source>IEEE Electronic Library (IEL)</source><creator>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</creator><creatorcontrib>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</creatorcontrib><description>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2019.2911888</identifier><language>eng</language><publisher>New York: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</publisher><subject>Analog circuits ; CMOS ; Cutting ; Digital filters ; Digital to analog conversion ; Digital to analog converters ; Drift ; Interface stability ; Phase detectors ; Phase locked loops ; Power consumption ; Resilience ; Sensors ; Transfer functions ; Voltage controlled oscillators</subject><ispartof>IEEE journal of solid-state circuits, 2019-01, Vol.54 (7), p.1862</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Marin, Jorge</creatorcontrib><creatorcontrib>Sacco, Elisa</creatorcontrib><creatorcontrib>Vergauwen, Johan</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><title>IEEE journal of solid-state circuits</title><description>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</description><subject>Analog circuits</subject><subject>CMOS</subject><subject>Cutting</subject><subject>Digital filters</subject><subject>Digital to analog conversion</subject><subject>Digital to analog converters</subject><subject>Drift</subject><subject>Interface stability</subject><subject>Phase detectors</subject><subject>Phase locked loops</subject><subject>Power consumption</subject><subject>Resilience</subject><subject>Sensors</subject><subject>Transfer functions</subject><subject>Voltage controlled oscillators</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNj8tKw0AYhQdRMF4ewN0PrhPnz8VOliZaqlQiSUFBpIz2Tzsllzoz6dqla_VBfAYfpU9iFB_A1TmH73DgMHaE3EPk8clVUaSezzH2_BhRCLHFHIwi4eIguNtmDuco3NjnfJftGbPsYxgKdNjHGeTtY2csJMnNeOwm0tAM-lHh3g9bXXeVhKxW1tLsoYb0OisgJ6OMVWuCghrTarhsLOlSPhHcKruAkZov4Fyr0v5WK0VNj7I1aZCweX0LOXx9ppuXdxxEPw4mVK9IS9tpglw2czpgO6WsDB3-6T47Hl5M0pG70u1zR8ZOl22nmx5NfT8Up1HQPw_-1_oGU4xdbQ</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Marin, Jorge</creator><creator>Sacco, Elisa</creator><creator>Vergauwen, Johan</creator><creator>Gielen, Georges</creator><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190101</creationdate><title>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</title><author>Marin, Jorge ; Sacco, Elisa ; Vergauwen, Johan ; Gielen, Georges</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22486532013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analog circuits</topic><topic>CMOS</topic><topic>Cutting</topic><topic>Digital filters</topic><topic>Digital to analog conversion</topic><topic>Digital to analog converters</topic><topic>Drift</topic><topic>Interface stability</topic><topic>Phase detectors</topic><topic>Phase locked loops</topic><topic>Power consumption</topic><topic>Resilience</topic><topic>Sensors</topic><topic>Transfer functions</topic><topic>Voltage controlled oscillators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marin, Jorge</creatorcontrib><creatorcontrib>Sacco, Elisa</creatorcontrib><creatorcontrib>Vergauwen, Johan</creatorcontrib><creatorcontrib>Gielen, Georges</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marin, Jorge</au><au>Sacco, Elisa</au><au>Vergauwen, Johan</au><au>Gielen, Georges</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>54</volume><issue>7</issue><spage>1862</spage><pages>1862-</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><abstract>This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.</abstract><cop>New York</cop><pub>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</pub><doi>10.1109/JSSC.2019.2911888</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2019-01, Vol.54 (7), p.1862 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_2248653201 |
source | IEEE Electronic Library (IEL) |
subjects | Analog circuits CMOS Cutting Digital filters Digital to analog conversion Digital to analog converters Drift Interface stability Phase detectors Phase locked loops Power consumption Resilience Sensors Transfer functions Voltage controlled oscillators |
title | A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A55%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Robust%20BBPLL-Based%200.18-%5BFormula%20Omitted%5Dm%20CMOS%20Resistive%20Sensor%20Interface%20With%20High%20Drift%20Resilience%20Over%20a%20%E2%88%9240%20%C2%B0C%E2%80%93175%20%C2%B0C%20Temperature%20Range&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Marin,%20Jorge&rft.date=2019-01-01&rft.volume=54&rft.issue=7&rft.spage=1862&rft.pages=1862-&rft.issn=0018-9200&rft.eissn=1558-173X&rft_id=info:doi/10.1109/JSSC.2019.2911888&rft_dat=%3Cproquest%3E2248653201%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2248653201&rft_id=info:pmid/&rfr_iscdi=true |