A Robust BBPLL-Based 0.18-[Formula Omitted]m CMOS Resistive Sensor Interface With High Drift Resilience Over a −40 °C–175 °C Temperature Range

This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma desig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of solid-state circuits 2019-01, Vol.54 (7), p.1862
Hauptverfasser: Marin, Jorge, Sacco, Elisa, Vergauwen, Johan, Gielen, Georges
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a drift-resilient time-based resistive sensor interface in a 0.18-[Formula Omitted] CMOS technology. The interface is built around only two oscillators, a phase detector, a digital filter, and a digital-to-analog converter (DAC), resulting in a simple first-order Delt–Sigma design with a predictable transfer function. The highly digital approach not only results in a small area but also implies that only a few analog circuits are sensitive to drift. The holistic drift-resilience strategy implemented combines time-based chopping and voltage-controlled oscillator (VCO) tuning to remove the dc and low-frequency errors introduced by VCO nonidealities and drift. These techniques do not introduce a significant area and power overhead. Silicon measurements show that the proposed bang–bang phase-locked loop (BBPLL)-based sensor interface exhibits ppm-level gain drift and offset drift for the entire −40 °C–175 °C temperature range while using a single-temperature calibration scheme and no external accurate references nor components for this drift stability. The interface provides a 15-effective number of bits conversion for a 100-ms conversion time and consumes 3.41 mW of power and occupies only 0.23 mm2 of the active area.
ISSN:0018-9200
1558-173X
DOI:10.1109/JSSC.2019.2911888