Secure Communication in Relay-Assisted Massive MIMO Downlink With Active Pilot Attacks

In this paper, the achievable secrecy rate of a relay-assisted massive multiple-input multiple-output (MIMO) downlink is investigated in the presence of a multi-antenna active/passive eavesdropper. The excess degrees-of-freedom offered by a massive MIMO base-station (BS) are exploited for sending ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2019-11, Vol.14 (11), p.2819-2833
Hauptverfasser: Kudathanthirige, Dhanushka, Timilsina, Santosh, Baduge, Gayan Amarasuriya Aruma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the achievable secrecy rate of a relay-assisted massive multiple-input multiple-output (MIMO) downlink is investigated in the presence of a multi-antenna active/passive eavesdropper. The excess degrees-of-freedom offered by a massive MIMO base-station (BS) are exploited for sending artificial noise (AN) via random and null-space precoders. An active eavesdropper contaminates the uplink channel estimates by sending pilot sequences identical to those of the legitimate users/relay. This active pilot contamination makes the massive MIMO BS implicitly beamform the confidential signals toward the active eavesdropper during two-hop downlink transmissions. The achievable secrecy rates are derived by taking the detrimental effects of actively contaminated channel state information with estimation errors and spatially correlated fading at the multiple-antenna terminals into account. The secrecy rate loss incurred by active pilot attacks over passive eavesdropping is investigated, and the secrecy rate gap between random and null-space-based AN is compared. A novel transmit power control policy is designed to efficiently allocate transmit power at the BS/relay for payload data and AN sequences for maximizing the achievable secrecy rate. Our results reveal that active pilot contamination attacks significantly degrade the achievable secrecy rate in dual-hop transmissions, and the corresponding detrimental effects cannot be asymptotically mitigated in the infinite BS antenna regime.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2019.2901825