Electrochemical CO2 Reduction on Bimetallic Surface Alloys: Enhanced Selectivity to CO for Co/Au(110) and to H2 for Sn/Au(110)

We investigated electrochemical CO2 reduction (ECR) on 0.1 monolayer‐thick‐Co and Sn‐deposited Au(110) surfaces (Co/Au(110), and Sn/Au(110)). Scanning tunneling microscopic images showed quasi‐one‐dimensional Co and Sn islands with different aspect ratios growing along the trenches of the missing‐ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-06, Vol.6 (12), p.3101-3107
Hauptverfasser: Todoroki, Naoto, Tei, Hiroki, Miyakawa, Taku, Tsurumaki, Hiroto, Wadayama, Toshimasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated electrochemical CO2 reduction (ECR) on 0.1 monolayer‐thick‐Co and Sn‐deposited Au(110) surfaces (Co/Au(110), and Sn/Au(110)). Scanning tunneling microscopic images showed quasi‐one‐dimensional Co and Sn islands with different aspect ratios growing along the trenches of the missing‐row direction of the (1×2) reconstructed Au(110) surface. The selectivity and partial current density of the CO and H2 evolutions correlated with those of the deposited metals. CO evolution selectivity of the former Co/Au(110) increased compared with that of the Au(110), while that of the Sn/Au(110) significantly decreased. Co/Au(110) showed 1.4‐fold higher CO evolution activity than that of the clean Au(110) at −1.35 V vs. reversible hydrogen electrode. In contrast, the H2 evolution of the latter surface was significantly enhanced at a potential lower than −0.1 V. The results showed that site separations of Au and alloying elements of Co and Sn at the topmost surface determine the ECR product selectivity of alloy electrodes. Surface engineering: Electrochemical CO2 reduction on Co/Au(110) and Sn/Au(110) surface alloys is investigated by using online electrochemical mass spectrometry. Co effectively improves the selectivity and activity for CO generation, while Sn increases the hydrogen evolution reaction activity of Au.
ISSN:2196-0216
2196-0216
DOI:10.1002/celc.201900725