Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies
The high implementation of renewable energy systems (RESs) and the need to increase transmission capacity across Europe (e.g., north -south Germany) have resulted in integrated power electronics (PE)-based solutions in electrical grids. PE allows more flexibility and control over power grids. Soluti...
Gespeichert in:
Veröffentlicht in: | IEEE industrial electronics magazine 2019-06, Vol.13 (2), p.41-55 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Magazinearticle |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 2 |
container_start_page | 41 |
container_title | IEEE industrial electronics magazine |
container_volume | 13 |
creator | De Carne, Giovanni Liserre, Marco Langwasser, Marius Ndreko, Mario Bachmann, Ralf De Doncker, Rik W. Dimitrovski, Robert Mortimer, Benedict J. Neufeld, Alexander Rojas, Freiber |
description | The high implementation of renewable energy systems (RESs) and the need to increase transmission capacity across Europe (e.g., north -south Germany) have resulted in integrated power electronics (PE)-based solutions in electrical grids. PE allows more flexibility and control over power grids. Solutions such as high -voltage (HV) dc systems and flexible alternating current transmission systems (FACTS) increase energy transfer capabilities while preserving the system's safety (e.g., providing reactive power). Additionally, PE-based solutions, which are characterized by fast dynamic control actions, can support the grid during disturbances [e.g., a low-voltage ride through (LVRT) during faults]. This article provides an overview of the current modeling techniques that involve problems from ac harmonic stability (high frequency) to load flow (dc), passing through ac and dc transient stability, SSR studies, and frequency control. |
doi_str_mv | 10.1109/MIE.2019.2909799 |
format | Magazinearticle |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2247899146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8744337</ieee_id><sourcerecordid>2247899146</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-feeea21d2d3a9c0fde68152efa7a179eb8bf44933f9f8012ecd91be060b4f6ff3</originalsourceid><addsrcrecordid>eNo9kM1LxDAQxYsouK7eBS8Bz12TNP2IF5G6roVdFFfxWNpmss1SmzVJEY_-57bbxcvMwPzezON53iXBM0Iwv1ll8xnFhM8oxzzm_MibEM6IjwkJj4c5oD4LKT_1zqzdYhxGlJOJ9_tRq6pGDwC7FqxFaVP0NbNo3SkHAklt0EoLaFS7QS_6GwyaN1A5o1tV2btbdI8WnRKwB9NaazuArgb0qja1G7X75cIo4Wetg40pnNItWrtOKLDn3oksGgsXhz713h_nb-mTv3xeZOn90q96o86XAFBQIqgICl5hKSBKSEhBFnFBYg5lUkrGeBBILhNMKFSCkxJwhEsmIymDqXc93t0Z_dWBdflWd6btX-aUsjjhnLCop_BIVUZba0DmO6M-C_OTE5wPQed90PkQdH4IupdcjRLVW_zHk5ixIIiDP-zueto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>magazinearticle</recordtype><pqid>2247899146</pqid></control><display><type>magazinearticle</type><title>Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies</title><source>IEEE Electronic Library (IEL)</source><creator>De Carne, Giovanni ; Liserre, Marco ; Langwasser, Marius ; Ndreko, Mario ; Bachmann, Ralf ; De Doncker, Rik W. ; Dimitrovski, Robert ; Mortimer, Benedict J. ; Neufeld, Alexander ; Rojas, Freiber</creator><creatorcontrib>De Carne, Giovanni ; Liserre, Marco ; Langwasser, Marius ; Ndreko, Mario ; Bachmann, Ralf ; De Doncker, Rik W. ; Dimitrovski, Robert ; Mortimer, Benedict J. ; Neufeld, Alexander ; Rojas, Freiber</creatorcontrib><description>The high implementation of renewable energy systems (RESs) and the need to increase transmission capacity across Europe (e.g., north -south Germany) have resulted in integrated power electronics (PE)-based solutions in electrical grids. PE allows more flexibility and control over power grids. Solutions such as high -voltage (HV) dc systems and flexible alternating current transmission systems (FACTS) increase energy transfer capabilities while preserving the system's safety (e.g., providing reactive power). Additionally, PE-based solutions, which are characterized by fast dynamic control actions, can support the grid during disturbances [e.g., a low-voltage ride through (LVRT) during faults]. This article provides an overview of the current modeling techniques that involve problems from ac harmonic stability (high frequency) to load flow (dc), passing through ac and dc transient stability, SSR studies, and frequency control.</description><identifier>ISSN: 1932-4529</identifier><identifier>EISSN: 1941-0115</identifier><identifier>DOI: 10.1109/MIE.2019.2909799</identifier><identifier>CODEN: IIEMAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Dynamic control ; Electric potential ; Electric power grids ; Electronics ; Energy exchange ; Energy transfer ; Energy transmission ; Flexible AC power transmission systems ; Flexible AC transmission systems ; High voltages ; Maximum power ; Natural resources ; Power electronics ; Power grids ; Reactive power ; Renewable energy sources ; Safety</subject><ispartof>IEEE industrial electronics magazine, 2019-06, Vol.13 (2), p.41-55</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-feeea21d2d3a9c0fde68152efa7a179eb8bf44933f9f8012ecd91be060b4f6ff3</citedby><cites>FETCH-LOGICAL-c291t-feeea21d2d3a9c0fde68152efa7a179eb8bf44933f9f8012ecd91be060b4f6ff3</cites><orcidid>0000-0001-9909-7516 ; 0000-0002-3700-2902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8744337$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>780,784,796,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8744337$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Carne, Giovanni</creatorcontrib><creatorcontrib>Liserre, Marco</creatorcontrib><creatorcontrib>Langwasser, Marius</creatorcontrib><creatorcontrib>Ndreko, Mario</creatorcontrib><creatorcontrib>Bachmann, Ralf</creatorcontrib><creatorcontrib>De Doncker, Rik W.</creatorcontrib><creatorcontrib>Dimitrovski, Robert</creatorcontrib><creatorcontrib>Mortimer, Benedict J.</creatorcontrib><creatorcontrib>Neufeld, Alexander</creatorcontrib><creatorcontrib>Rojas, Freiber</creatorcontrib><title>Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies</title><title>IEEE industrial electronics magazine</title><addtitle>MIE</addtitle><description>The high implementation of renewable energy systems (RESs) and the need to increase transmission capacity across Europe (e.g., north -south Germany) have resulted in integrated power electronics (PE)-based solutions in electrical grids. PE allows more flexibility and control over power grids. Solutions such as high -voltage (HV) dc systems and flexible alternating current transmission systems (FACTS) increase energy transfer capabilities while preserving the system's safety (e.g., providing reactive power). Additionally, PE-based solutions, which are characterized by fast dynamic control actions, can support the grid during disturbances [e.g., a low-voltage ride through (LVRT) during faults]. This article provides an overview of the current modeling techniques that involve problems from ac harmonic stability (high frequency) to load flow (dc), passing through ac and dc transient stability, SSR studies, and frequency control.</description><subject>Dynamic control</subject><subject>Electric potential</subject><subject>Electric power grids</subject><subject>Electronics</subject><subject>Energy exchange</subject><subject>Energy transfer</subject><subject>Energy transmission</subject><subject>Flexible AC power transmission systems</subject><subject>Flexible AC transmission systems</subject><subject>High voltages</subject><subject>Maximum power</subject><subject>Natural resources</subject><subject>Power electronics</subject><subject>Power grids</subject><subject>Reactive power</subject><subject>Renewable energy sources</subject><subject>Safety</subject><issn>1932-4529</issn><issn>1941-0115</issn><fulltext>true</fulltext><rsrctype>magazinearticle</rsrctype><creationdate>2019</creationdate><recordtype>magazinearticle</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LxDAQxYsouK7eBS8Bz12TNP2IF5G6roVdFFfxWNpmss1SmzVJEY_-57bbxcvMwPzezON53iXBM0Iwv1ll8xnFhM8oxzzm_MibEM6IjwkJj4c5oD4LKT_1zqzdYhxGlJOJ9_tRq6pGDwC7FqxFaVP0NbNo3SkHAklt0EoLaFS7QS_6GwyaN1A5o1tV2btbdI8WnRKwB9NaazuArgb0qja1G7X75cIo4Wetg40pnNItWrtOKLDn3oksGgsXhz713h_nb-mTv3xeZOn90q96o86XAFBQIqgICl5hKSBKSEhBFnFBYg5lUkrGeBBILhNMKFSCkxJwhEsmIymDqXc93t0Z_dWBdflWd6btX-aUsjjhnLCop_BIVUZba0DmO6M-C_OTE5wPQed90PkQdH4IupdcjRLVW_zHk5ixIIiDP-zueto</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>De Carne, Giovanni</creator><creator>Liserre, Marco</creator><creator>Langwasser, Marius</creator><creator>Ndreko, Mario</creator><creator>Bachmann, Ralf</creator><creator>De Doncker, Rik W.</creator><creator>Dimitrovski, Robert</creator><creator>Mortimer, Benedict J.</creator><creator>Neufeld, Alexander</creator><creator>Rojas, Freiber</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9909-7516</orcidid><orcidid>https://orcid.org/0000-0002-3700-2902</orcidid></search><sort><creationdate>20190601</creationdate><title>Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies</title><author>De Carne, Giovanni ; Liserre, Marco ; Langwasser, Marius ; Ndreko, Mario ; Bachmann, Ralf ; De Doncker, Rik W. ; Dimitrovski, Robert ; Mortimer, Benedict J. ; Neufeld, Alexander ; Rojas, Freiber</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-feeea21d2d3a9c0fde68152efa7a179eb8bf44933f9f8012ecd91be060b4f6ff3</frbrgroupid><rsrctype>magazinearticle</rsrctype><prefilter>magazinearticle</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dynamic control</topic><topic>Electric potential</topic><topic>Electric power grids</topic><topic>Electronics</topic><topic>Energy exchange</topic><topic>Energy transfer</topic><topic>Energy transmission</topic><topic>Flexible AC power transmission systems</topic><topic>Flexible AC transmission systems</topic><topic>High voltages</topic><topic>Maximum power</topic><topic>Natural resources</topic><topic>Power electronics</topic><topic>Power grids</topic><topic>Reactive power</topic><topic>Renewable energy sources</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>De Carne, Giovanni</creatorcontrib><creatorcontrib>Liserre, Marco</creatorcontrib><creatorcontrib>Langwasser, Marius</creatorcontrib><creatorcontrib>Ndreko, Mario</creatorcontrib><creatorcontrib>Bachmann, Ralf</creatorcontrib><creatorcontrib>De Doncker, Rik W.</creatorcontrib><creatorcontrib>Dimitrovski, Robert</creatorcontrib><creatorcontrib>Mortimer, Benedict J.</creatorcontrib><creatorcontrib>Neufeld, Alexander</creatorcontrib><creatorcontrib>Rojas, Freiber</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE industrial electronics magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Carne, Giovanni</au><au>Liserre, Marco</au><au>Langwasser, Marius</au><au>Ndreko, Mario</au><au>Bachmann, Ralf</au><au>De Doncker, Rik W.</au><au>Dimitrovski, Robert</au><au>Mortimer, Benedict J.</au><au>Neufeld, Alexander</au><au>Rojas, Freiber</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies</atitle><jtitle>IEEE industrial electronics magazine</jtitle><stitle>MIE</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>41</spage><epage>55</epage><pages>41-55</pages><issn>1932-4529</issn><eissn>1941-0115</eissn><coden>IIEMAW</coden><abstract>The high implementation of renewable energy systems (RESs) and the need to increase transmission capacity across Europe (e.g., north -south Germany) have resulted in integrated power electronics (PE)-based solutions in electrical grids. PE allows more flexibility and control over power grids. Solutions such as high -voltage (HV) dc systems and flexible alternating current transmission systems (FACTS) increase energy transfer capabilities while preserving the system's safety (e.g., providing reactive power). Additionally, PE-based solutions, which are characterized by fast dynamic control actions, can support the grid during disturbances [e.g., a low-voltage ride through (LVRT) during faults]. This article provides an overview of the current modeling techniques that involve problems from ac harmonic stability (high frequency) to load flow (dc), passing through ac and dc transient stability, SSR studies, and frequency control.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MIE.2019.2909799</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-9909-7516</orcidid><orcidid>https://orcid.org/0000-0002-3700-2902</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4529 |
ispartof | IEEE industrial electronics magazine, 2019-06, Vol.13 (2), p.41-55 |
issn | 1932-4529 1941-0115 |
language | eng |
recordid | cdi_proquest_journals_2247899146 |
source | IEEE Electronic Library (IEL) |
subjects | Dynamic control Electric potential Electric power grids Electronics Energy exchange Energy transfer Energy transmission Flexible AC power transmission systems Flexible AC transmission systems High voltages Maximum power Natural resources Power electronics Power grids Reactive power Renewable energy sources Safety |
title | Which Deepness Class Is Suited for Modeling Power Electronics?: A Guide for Choosing the Right Model for Grid-Integration Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A01%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Which%20Deepness%20Class%20Is%20Suited%20for%20Modeling%20Power%20Electronics?:%20A%20Guide%20for%20Choosing%20the%20Right%20Model%20for%20Grid-Integration%20Studies&rft.jtitle=IEEE%20industrial%20electronics%20magazine&rft.au=De%20Carne,%20Giovanni&rft.date=2019-06-01&rft.volume=13&rft.issue=2&rft.spage=41&rft.epage=55&rft.pages=41-55&rft.issn=1932-4529&rft.eissn=1941-0115&rft.coden=IIEMAW&rft_id=info:doi/10.1109/MIE.2019.2909799&rft_dat=%3Cproquest_RIE%3E2247899146%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2247899146&rft_id=info:pmid/&rft_ieee_id=8744337&rfr_iscdi=true |