Double Cosets of Stabilizers of Totally Isotropic Subspaces in a Special Unitary Group II
In 2016, the authors considered the decomposition SU D h = ∪ i P u γ i P υ , where SU( D , h ) is a special unitary group over a division algebra D with involution, h is a symmetric or skew-symmetric nondegenerate Hermitian form, and P u , P υ are stabilizers of totally isotropic subspaces of the u...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2019-07, Vol.240 (4), p.428-446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2016, the authors considered the decomposition
SU
D
h
=
∪
i
P
u
γ
i
P
υ
, where SU(
D
,
h
) is a special unitary group over a division algebra
D
with involution,
h
is a symmetric or skew-symmetric nondegenerate Hermitian form, and
P
u
,
P
υ
are stabilizers of totally isotropic subspaces of the unitary space. Since Γ = SU(
D
,
h
) is a point group of a classical algebraic group
Γ
˜
, there is the “order of adherence” on the set of double cosets {
P
u
γ
i
P
υ
}, which is induced by the Zariski topology on
Γ
˜
. In the present paper, the adherence of such double cosets is described for the cases where
Γ
˜
is an orthogonal or a symplectic group (that is, for groups of types
B
r
,
C
r
,
D
r
). |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-019-04361-3 |