A Transcendence Basis in the Differential Field of Invariants of Pseudo-Galilean Group

Let G be a subgroup in the group of all invertible linear transformations of a finite-dimensional real space X . One of the problems in differential geometry is that of finding easily verified necessary and sufficient conditions for G -equivalence of paths in X . In solving this problem, we use meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian mathematics 2019-03, Vol.63 (3), p.15-24
Hauptverfasser: Muminov, K. K., Chilin, V. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a subgroup in the group of all invertible linear transformations of a finite-dimensional real space X . One of the problems in differential geometry is that of finding easily verified necessary and sufficient conditions for G -equivalence of paths in X . In solving this problem, we use methods of the theory of differential invariants which give descriptions of transcendence bases of differential fields of G -invariant differential rational functions. Having explicit forms of transcendence bases, we can obtain efficient criteria for G -equivalence of paths with respect to actions of the special linear, orthogonal, pseudoorthogonal, and symplectic groups. We present a description of one finite transcendence basis in the differential field of differential rational functions invariant with respect to the action of the pseudo-Galilean group Γ O . Based on this, we establish necessary and sufficient conditions of Γ O -equivalence of paths.
ISSN:1066-369X
1934-810X
DOI:10.3103/S1066369X19030022