Geometric mean block matrices
We consider an m×m block matrix G with entries Ai#Aj where A1,…,Am are positive definite matrices of fixed size and A#B is the geometric mean of positive definite matrix A and B. We show that G is positive semidefinite if and only if the family of A1,…,Am is Γ-commuting; it can be transformed to a c...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-08, Vol.575, p.299-313 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider an m×m block matrix G with entries Ai#Aj where A1,…,Am are positive definite matrices of fixed size and A#B is the geometric mean of positive definite matrix A and B. We show that G is positive semidefinite if and only if the family of A1,…,Am is Γ-commuting; it can be transformed to a commuting family of positive definite matrices by a congruence transformation. This result via Γ-commuting families provides not only a kind of positive semidefinite block matrices but also a new extremal characterization of two variable geometric mean in terms of multivariate block matrices. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2019.04.008 |