Combined radiometer-radar microphysical profile estimations with emphasis on high-frequency brightness temperature observations
Information about the vertical microphysical cloud structure is useful in many modeling and predictive practices. Radiometers and radars are used to observe hydrometeor properties. This paper describes an iterative retrieval algorithm that combines the use of airborne active and wideband (10-340 GHz...
Gespeichert in:
Veröffentlicht in: | Journal of applied meteorology and climatology 2003-04, Vol.42 (4), p.476 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Information about the vertical microphysical cloud structure is useful in many modeling and predictive practices. Radiometers and radars are used to observe hydrometeor properties. This paper describes an iterative retrieval algorithm that combines the use of airborne active and wideband (10-340 GHz) passive observations to estimate the vertical content and particle size distributions of liquid and frozen hydrometeors. Airborne radar and radiometer observations from the third Convection and Moisture Experiment (CAMEX-3) were used in the retrieval algorithm as constraints. Nadir profiles were estimated for 1 min each of flight time (approximately 12.5 km along track) for anvil, convective, and quasi-stratiform clouds associated with Hurricane Bonnie (August 1998). The physically based retrieval algorithm relies on high frequencies (150 GHz) to provide details on the frozen hydrometeors. Neglecting the high frequencies yielded acceptable estimates of the liquid profiles, but the ice profiles were poorly retrieved. The wideband observations were found to more than double the estimated frozen hydrometeor content as compared with retrievals using only 90 GHz and below. The convective and quasi-stratiform iterative retrievals quickly reached convergence. The complex structure of the frozen hydrometeors required the most iterations for convergence for the anvil cloud type. Nonunique profiles, within physical and theoretical bounds, were retrieved for thin anvil ice clouds. A qualitative validation using coincident in situ CAMEX-3 observations shows that the retrieved particle size distributions are well corroborated with independent measurements. |
---|---|
ISSN: | 1558-8424 1558-8432 |