Understanding photon sphere and black hole shadow in dynamically evolving spacetimes

We have derived the differential equation governing the evolution of the photon sphere for dynamical black hole spacetimes with or without spherical symmetry. Numerical solution of the same depicting evolution of the photon sphere has been presented for Vaidya, Reissner-Nordström-Vaidya and de Sitte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-05, Vol.99 (10), p.104080, Article 104080
Hauptverfasser: Mishra, Akash K, Chakraborty, Sumanta, Sarkar, Sudipta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have derived the differential equation governing the evolution of the photon sphere for dynamical black hole spacetimes with or without spherical symmetry. Numerical solution of the same depicting evolution of the photon sphere has been presented for Vaidya, Reissner-Nordström-Vaidya and de Sitter Vaidya spacetimes. It has been pointed out that evolution of the photon sphere depends crucially on the validity of the null energy condition by the infalling matter and may present an observational window to even test it through black hole shadow. We have also presented the evolution of the photon sphere for slowly rotating Kerr-Vaidya spacetime and associated structure of black hole shadow. Finally, the effective graviton metric for Einstein-Gauss-Bonnet gravity has been presented, and the graviton sphere has been contrasted with the photon sphere in this context.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.99.104080