On the Corona Theorem on Smooth Curves

We prove the corona theorem for domains whose boundary lies in certain smooth quasicircles. These curves, which are not necessarily Dini-smooth, are defined by quasiconformal mappings whose complex dilatation verifies certain conditions. Most importantly, we do not assume any “thickness” condition o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of Geometric Analysis 2019-07, Vol.29 (3), p.2985-2997
Hauptverfasser: Enríquez-Salamanca, J. M., González, M. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the corona theorem for domains whose boundary lies in certain smooth quasicircles. These curves, which are not necessarily Dini-smooth, are defined by quasiconformal mappings whose complex dilatation verifies certain conditions. Most importantly, we do not assume any “thickness” condition on the boundary domain. In this sense, our results complement those obtained by Garnett and Jones (Acta Math 155:27–40, 1985 ) and Moore on C 1 + α curves (Proc Am Math Soc 100:266–270, 1987 ).
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-018-00101-2