Hybrid photonic-plasmonic platform for high-throughput single-molecule studies
We present the design and numerical characterization of a hybrid photonic-plasmonic nanoresonator comprised of a 2D photonic crystal (PhC) cavity, a gold bowtie nanoantenna (BNA) and a silicon dioxide, SiO2, spacer. This device is designed to serve as the building block of a multicomponent platform...
Gespeichert in:
Veröffentlicht in: | Optical materials express 2019-06, Vol.9 (6), p.2511 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the design and numerical characterization of a hybrid photonic-plasmonic nanoresonator comprised of a 2D photonic crystal (PhC) cavity, a gold bowtie nanoantenna (BNA) and a silicon dioxide, SiO2, spacer. This device is designed to serve as the building block of a multicomponent platform capable of running multiple single-molecule experiments such as optical trapping and sample interrogation simultaneously. The thickness and structure of the spacer layer are adjusted to maximize the energy in the externally accessible hot-spot in the BNA gap. Suitability of the device for photonic integration is demonstrated by exciting it through a PhC waveguide. |
---|---|
ISSN: | 2159-3930 2159-3930 |
DOI: | 10.1364/OME.9.002511 |