Highly Digital Second-Order [Formula Omitted] VCO ADC
A continuous-time second-order [Formula Omitted] analog-to-digital converter (ADC) is presented in this paper. The proposed ADC is based on a novel architecture and uses current starved ring oscillators as integrators to achieve the second-order noise shaping. The proposed architecture does not requ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems. I, Regular papers Regular papers, 2019-07, Vol.66 (7), p.2415 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A continuous-time second-order [Formula Omitted] analog-to-digital converter (ADC) is presented in this paper. The proposed ADC is based on a novel architecture and uses current starved ring oscillators as integrators to achieve the second-order noise shaping. The proposed architecture does not require excess loop delay compensation or nonlinearity calibration. Static element mismatch in the multi-bit current digital-to-analog converter is high-pass shaped by intrinsic data-weighted averaging. Detailed analysis and insights on the various trade-offs involved in the design of the proposed ADC are presented in this paper. A prototype ADC is implemented in 65-nm CMOS and achieves 64.2-dB SNDR at a bandwidth of 2.5 MHz and a Schreier FoM of 158.2 dB. The ADC operates at 205 MHz and consumes 1 mW of power. The measured power supply rejection ratio is 56.2 dB. |
---|---|
ISSN: | 1549-8328 1558-0806 |
DOI: | 10.1109/TCSI.2019.2898415 |