Short-Term Load Forecasting With Deep Residual Networks
We present in this paper a model for forecasting short-term electric load based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers' understanding of the task by virtue of different neural network building blocks. Specifically, a modified deep res...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on smart grid 2019-07, Vol.10 (4), p.3943-3952 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present in this paper a model for forecasting short-term electric load based on deep residual networks. The proposed model is able to integrate domain knowledge and researchers' understanding of the task by virtue of different neural network building blocks. Specifically, a modified deep residual network is formulated to improve the forecast results. Further, a two-stage ensemble strategy is used to enhance the generalization capability of the proposed model. We also apply the proposed model to probabilistic load forecasting using Monte Carlo dropout. Three public datasets are used to prove the effectiveness of the proposed model. Multiple test cases and comparison with existing models show that the proposed model provides accurate load forecasting results and has high generalization capability. |
---|---|
ISSN: | 1949-3053 1949-3061 |
DOI: | 10.1109/TSG.2018.2844307 |