The Experimental Validation of Designed Fiber Optic Pressure Sensors With EPDM Diaphragm

This paper focused on the experimental validation of diaphragm-based Fabry-Perot fiber optic pressure sensors (D-FP-FOPS) with ethylene propylene diene terpolymers (EPDM) diaphragm as designed and analyzed sensor tip theoretically. We also used self-adhesive EPDM rubber as a diaphragm for the first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-07, Vol.19 (14), p.5680-5685
Hauptverfasser: Esat Hayber, Sekip, Aydemir, Umut, Tabaru, Timucin Emre, Saracoglu, Omer Galip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper focused on the experimental validation of diaphragm-based Fabry-Perot fiber optic pressure sensors (D-FP-FOPS) with ethylene propylene diene terpolymers (EPDM) diaphragm as designed and analyzed sensor tip theoretically. We also used self-adhesive EPDM rubber as a diaphragm for the first time in the literature. Analytical calculation and finite element method (FEM) analysis were carried out to obtain values of fundamental resonance frequency (f 0 ) and deflection (d) with diaphragm specific values of Young's modulus and Poisson's ratio measured by tensile tests. We produced D-FP-FOPS tip with EPDM diaphragm and obtained experimental f_{0} between 250-400 Hz from extended signal to noise ratio (SNR) plot which figured out with the help of theoretical values of f_{0} . We also analyzed minimum detectable pressure (MDP) mapping which is used to confirm SNR mapping for D-FP-FOPS. We noticed that our sensor could be operated up to 1.6 Pa pressure which confirms the mechanical limit given in the literature. Before production of D-FP-FOPS, a pioneering way which includes design, analytical calculation, FEM analysis, and experimental validation was demonstrated as a novel. Moreover, since we used self-adhesive EPDM tape as a diaphragm material, our sensor tip cost is less than 50 which capable to compete with commercial sensors.
ISSN:1530-437X
1558-1748
DOI:10.1109/JSEN.2019.2908410