Enhanced Cyber-Physical Security in Internet of Things Through Energy Auditing
Internet of Things (IoT) are vulnerable to both cyber and physical attacks. Therefore, a cyber-physical security system against different kinds of attacks is in high demand. Traditionally, attacks are detected via monitoring system logs. However, the system logs, such as network statistics and file...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2019-06, Vol.6 (3), p.5224-5231 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Internet of Things (IoT) are vulnerable to both cyber and physical attacks. Therefore, a cyber-physical security system against different kinds of attacks is in high demand. Traditionally, attacks are detected via monitoring system logs. However, the system logs, such as network statistics and file access records, can be forged. Furthermore, existing solutions mainly target cyber attacks. This paper proposes the first energy auditing and analytics-based IoT monitoring mechanism. To our best knowledge, this is the first attempt to detect and identify IoT cyber and physical attacks based on energy auditing. Using the energy meter readings, we develop a dual deep learning (DL) model system, which adaptively learns the system behaviors in a normal condition. Unlike the previous single DL models for energy disaggregation, we propose a disaggregation-aggregation architecture. The innovative design makes it possible to detect both cyber and physical attacks. The disaggregation model analyzes the energy consumptions of system subcomponents, e.g., CPU, network, disk, etc., to identify cyber attacks, while the aggregation model detects the physical attacks by characterizing the difference between the measured power consumption and prediction results. Using energy consumption data only, the proposed system identifies both cyber and physical attacks. The system and algorithm designs are described in detail. In the hardware simulation experiments, the proposed system exhibits promising performances. |
---|---|
ISSN: | 2327-4662 2327-4662 |
DOI: | 10.1109/JIOT.2019.2899492 |