Explicit Methods for Integrating Stiff Cauchy Problems
An explicit method for solving stiff Cauchy problems is proposed. The method relies on explicit schemes and a step size selection algorithm based on the curvature of an integral curve. Closed-form formulas are derived for finding the curvature. For Runge–Kutta schemes with up to four stages, the cor...
Gespeichert in:
Veröffentlicht in: | Doklady. Mathematics 2019-03, Vol.99 (2), p.230-234 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An explicit method for solving stiff Cauchy problems is proposed. The method relies on explicit schemes and a step size selection algorithm based on the curvature of an integral curve. Closed-form formulas are derived for finding the curvature. For Runge–Kutta schemes with up to four stages, the corresponding sets of coefficients are given. The method is validated on a test problem with a given exact solution. It is shown that the method is as accurate and robust as implicit methods, but is substantially superior to them in efficiency. A numerical example involving chemical kinetics computations with 9 components and 50 reactions is given. |
---|---|
ISSN: | 1064-5624 1531-8362 |
DOI: | 10.1134/S1064562419020273 |