Adsorption state of NO on Ir(111) surfaces under excess O2 coexisting condition

•The adsorption state of NO under O2 coexisting conditions on Ir(111) single-crystal surfaces was studied by NAP-XPS.•At room temperature, O2 causes a partial replacement of NO at hollow sites with atomic oxygen.•At elevated temperatures (200–250 °C), the adsorption of NO is significantly suppressed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface science 2019-07, Vol.685, p.1-6
Hauptverfasser: Ikeda, H., Koike, Y., Shiratori, K., Ueda, K., Shirahata, N., Isegawa, K., Toyoshima, R., Masuda, S., Mase, K., Nito, T., Kondoh, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•The adsorption state of NO under O2 coexisting conditions on Ir(111) single-crystal surfaces was studied by NAP-XPS.•At room temperature, O2 causes a partial replacement of NO at hollow sites with atomic oxygen.•At elevated temperatures (200–250 °C), the adsorption of NO is significantly suppressed by high-density chemisorbed atomic oxygen. Iridium (Ir) exhibits a good efficiency for reduction of NO under excess O2 coexisting conditions at temperatures higher than 250 °C. On the other hand, the advantage is lost at lower temperatures below 250 °C under O2 existence, compared to any other platinum group metals. In this study, adsorption behavior of NO on Ir(111) single-crystal surfaces under excess O2 coexisting conditions at the temperatures from room temperature to 250 °C has been studied by in-situ X-ray Photoelectron Spectroscopy (XPS). It is revealed that the coexisting O2 induces formation of a high-density chemisorbed atomic oxygen (O) phase and the atomic O phase suppresses adsorption of NO at on-top sites significantly, which suggests that the suppression of NO adsorption causes a decrease in the ability of NO reduction at the lower temperatures. [Display omitted]
ISSN:0039-6028
1879-2758
DOI:10.1016/j.susc.2019.01.015