Non-destructive means and methods for structural diagnosis of masonry arch bridges

Within the precepts defended by the International Charter of Kraków, this paper aims at presenting a fully non-destructive multidisciplinary approach able to characterize masonry bridges at three different levels: i) geometrical level; ii) material level and; iii) structural level. To this end, this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation in construction 2019-08, Vol.104, p.360-382
Hauptverfasser: Sánchez-Aparicio, Luis Javier, Bautista-De Castro, Álvaro, Conde, Borja, Carrasco, Pedro, Ramos, Luís F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Within the precepts defended by the International Charter of Kraków, this paper aims at presenting a fully non-destructive multidisciplinary approach able to characterize masonry bridges at three different levels: i) geometrical level; ii) material level and; iii) structural level. To this end, this approach integrates the terrestrial laser scanner, the sonic and impact-echo methods, the ground penetrating radar and the multichannel analysis of surface waves. All these data are combined with reverse engineering procedures, allowing the creation of suitable as-built CAD models for advanced numerical simulations. Then, these numerical models are contrasted and updated through the data provided by the ambient vibration tests. To validate the methodology proposed in this paper, the Roman bridge of Avila was used as study case. This bridge shows a complex mixture of constructive techniques (masonry, cohesive material, Opus Caementicium and reinforced concrete). Thus, the numerical model was considered for performing predictive structural analysis.
ISSN:0926-5805
1872-7891
DOI:10.1016/j.autcon.2019.04.021