Combinatorial homotopy theory for operads

We introduce an explicit combinatorial characterization of the minimal model \({\cal O}_{\infty}\) of the coloured operad \({\cal O}\) encoding non-symmetric operads. In our description of \({\cal O}_{\infty}\), the spaces of operations are defined in terms of hypergraph polytopes and the compositio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
1. Verfasser: Obradović, Jovana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce an explicit combinatorial characterization of the minimal model \({\cal O}_{\infty}\) of the coloured operad \({\cal O}\) encoding non-symmetric operads. In our description of \({\cal O}_{\infty}\), the spaces of operations are defined in terms of hypergraph polytopes and the composition structure generalizes the one of the \(A_{\infty}\)-operad. As further generalizations of this construction, we present a combinatorial description of the \(W\)-construction applied on \({\cal O}\), as well as of the minimal model of the coloured operad \({\cal C}\) encoding non-symmetric cyclic operads.
ISSN:2331-8422