Combinatorial homotopy theory for operads
We introduce an explicit combinatorial characterization of the minimal model \({\cal O}_{\infty}\) of the coloured operad \({\cal O}\) encoding non-symmetric operads. In our description of \({\cal O}_{\infty}\), the spaces of operations are defined in terms of hypergraph polytopes and the compositio...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce an explicit combinatorial characterization of the minimal model \({\cal O}_{\infty}\) of the coloured operad \({\cal O}\) encoding non-symmetric operads. In our description of \({\cal O}_{\infty}\), the spaces of operations are defined in terms of hypergraph polytopes and the composition structure generalizes the one of the \(A_{\infty}\)-operad. As further generalizations of this construction, we present a combinatorial description of the \(W\)-construction applied on \({\cal O}\), as well as of the minimal model of the coloured operad \({\cal C}\) encoding non-symmetric cyclic operads. |
---|---|
ISSN: | 2331-8422 |