Design and fabrication of polyaniline/Bi2MoO6 nanocomposites for enhanced visible-light-driven photocatalysis

The facile synthesis of polyaniline/Bi2MoO6 (PANIx/Bi2MoO6) nanocomposites for visible-light-driven degradation of rhodamine B (RhB) was developed via in situ polymerization of PANI on the surface of Bi2MoO6 nanosheets as robust photocatalysts. The molecular PANI layers covered the surface of flower...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of chemistry 2019, Vol.43 (24), p.9606-9613
Hauptverfasser: Feng, Tiantian, Yin, Hao, Jiang, Hao, Chai, Xin, Li, Xinle, Li, Deyang, Wu, Jing, Liu, Xuanhe, Sun, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The facile synthesis of polyaniline/Bi2MoO6 (PANIx/Bi2MoO6) nanocomposites for visible-light-driven degradation of rhodamine B (RhB) was developed via in situ polymerization of PANI on the surface of Bi2MoO6 nanosheets as robust photocatalysts. The molecular PANI layers covered the surface of flower-like Bi2MoO6 microspheres consisting of ultrathin nanosheets (13.8 ± 1.6 nm) and exerted no impact on the intrinsic crystallinity of Bi2MoO6. The PANI/Bi2MoO6 exhibited enhanced visible light absorbance, improved photoelectrochemical performance and remarkably increased photocatalytic efficiency in the degradation of RhB. The synergistic effect of the well-matched band structures of Bi2MoO6 and PANI coupled with the molecular PANI layers for excellent hole transfer and accessible active sites contributed to the enhanced separation efficiency of photogenerated charge carriers and the boosted photocatalytic activity for RhB removal. Mechanism studies indicated that the photoinduced holes and superoxide radicals played essential roles in the enhanced photocatalytic performance. The optimized photodegradation rate for RhB was up to ∼100% during 120 min in the case of PANI0.5/Bi2MoO6, which revealed the first-order kinetics with a high apparent rate constant of 0.0335 min−1 and acceptable recycling stability. This work sheds light on the application of Bi2MoO6-based photocatalysts with superior photocatalytic activity in environmental remediation.
ISSN:1144-0546
1369-9261
DOI:10.1039/c9nj01651a