On the Zeros of a Class of Modular Functions
We generalize a number of works on the zeros of certain level 1 modular forms to a class of weakly holomorphic modular functions whose q -expansions satisfy the following: f k ( A ; τ ) : = q - k ( 1 + a ( 1 ) q + a ( 2 ) q 2 + ⋯ ) + O ( q ) , where a ( n ) are numbers satisfying a certain analytic...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2019-06, Vol.23 (2), p.417-422 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize a number of works on the zeros of certain level 1 modular forms to a class of weakly holomorphic modular functions whose
q
-expansions satisfy the following:
f
k
(
A
;
τ
)
:
=
q
-
k
(
1
+
a
(
1
)
q
+
a
(
2
)
q
2
+
⋯
)
+
O
(
q
)
,
where
a
(
n
) are numbers satisfying a certain analytic condition. We show that the zeros of such
f
k
(
τ
)
in the fundamental domain of
SL
2
(
Z
)
lie on
|
τ
|
=
1
and are transcendental. We recover as a special case earlier work of Witten on extremal “partition” functions
Z
k
(
τ
)
. These functions were originally conceived as possible generalizations of constructions in three-dimensional quantum gravity. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-019-00434-x |