Aniline-mediated synthesis of carboxymethyl cellulose protected silver nanoparticles modified electrode for the differential pulse anodic stripping voltammetry detection of mercury at trace level
Single-pot synthesis of carboxymethylcellulose-protected silver nanoparticles (CMC@AgNPs) was investigated using aniline as a reducing agent. Polymer matrix-embedded nanoparticles were synthesized by two different experimental conditions, namely under reflux and at room temperature. Similarly, a con...
Gespeichert in:
Veröffentlicht in: | Ionics 2019-07, Vol.25 (7), p.3431-3441 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single-pot synthesis of carboxymethylcellulose-protected silver nanoparticles (CMC@AgNPs) was investigated using aniline as a reducing agent. Polymer matrix-embedded nanoparticles were synthesized by two different experimental conditions, namely under reflux and at room temperature. Similarly, a control experiment was carried out using polyvinylpyrrolidone as stabilizing agent under identical experimental conditions. Resulting AgNPs were isolated and characterized by UV–Vis, FT-IR, and SEM to identify shape, size, and type of capping action. CMC-capped AgNPs were octahedron-shaped whereas PVP-capped exhibited a core–shell kind of capping similar to a nested protection of AgNPs. The electrochemical property of the modified electrode was studied using electrochemical impedance spectroscopy and cyclic voltammetry. Electrochemical detection of Hg
2+
was investigated using CMC@AgNPs/GCE with an enhanced peak current as noted by DPASV method. Detection limit was found to be 0.19 nM, and its linear ranges were between 5 and 75 μM based on signal-to-noise ratio (S/
N
= 3). The present system can be utilized for the determination of Hg
2+
in water samples at low-concentration ranges.
Graphical abstract
ᅟ |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-019-02858-0 |