Partitions and the Minimal Excludant

Fraenkel and Peled have defined the minimal excludant or “ mex ” function on a set S of positive integers is the least positive integer not in S . For each integer partition π , we define mex ( π ) to be the least positive integer that is not a part of π . Define σ mex ( n ) to be the sum of mex ( π...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of combinatorics 2019-06, Vol.23 (2), p.249-254
Hauptverfasser: Andrews, George E., Newman, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fraenkel and Peled have defined the minimal excludant or “ mex ” function on a set S of positive integers is the least positive integer not in S . For each integer partition π , we define mex ( π ) to be the least positive integer that is not a part of π . Define σ mex ( n ) to be the sum of mex ( π ) taken over all partitions of n . It will be shown that σ mex ( n ) is equal to the number of partitions of n into distinct parts with two colors. Finally the number of partitions π of n with mex ( π ) odd is almost always even.
ISSN:0218-0006
0219-3094
DOI:10.1007/s00026-019-00427-w