Partitions and the Minimal Excludant
Fraenkel and Peled have defined the minimal excludant or “ mex ” function on a set S of positive integers is the least positive integer not in S . For each integer partition π , we define mex ( π ) to be the least positive integer that is not a part of π . Define σ mex ( n ) to be the sum of mex ( π...
Gespeichert in:
Veröffentlicht in: | Annals of combinatorics 2019-06, Vol.23 (2), p.249-254 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fraenkel and Peled have defined the minimal excludant or “
mex
” function on a set
S
of positive integers is the least positive integer not in
S
. For each integer partition
π
, we define
mex
(
π
)
to be the least positive integer that is not a part of
π
. Define
σ
mex
(
n
)
to be the sum of
mex
(
π
)
taken over all partitions of
n
. It will be shown that
σ
mex
(
n
)
is equal to the number of partitions of
n
into distinct parts with two colors. Finally the number of partitions
π
of
n
with
mex
(
π
)
odd is almost always even. |
---|---|
ISSN: | 0218-0006 0219-3094 |
DOI: | 10.1007/s00026-019-00427-w |