Machine Learning Phase Diagram in the Half-filled One-dimensional Extended Hubbard Model
We demonstrate that supervised machine learning (ML) with entanglement spectrum can give useful information for constructing phase diagram in the half-filled one-dimensional extended Hubbard model. Combining ML with infinite-size density-matrix renormalization group, we confirm that bond-order-wave...
Gespeichert in:
Veröffentlicht in: | Journal of the Physical Society of Japan 2019-06, Vol.88 (6), p.65001 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate that supervised machine learning (ML) with entanglement spectrum can give useful information for constructing phase diagram in the half-filled one-dimensional extended Hubbard model. Combining ML with infinite-size density-matrix renormalization group, we confirm that bond-order-wave phase remains stable in the thermodynamic limit. |
---|---|
ISSN: | 0031-9015 1347-4073 |
DOI: | 10.7566/JPSJ.88.065001 |