Finite Homomorphic Images of Groups of Finite Rank
Let π be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic π -image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the f...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2019-05, Vol.60 (3), p.373-376 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
π
be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic
π
-image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the following result of the article: Each soluble pro-
π
-group of finite rank has an open normal pronilpotent subgroup. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S0037446619030017 |