Finite Homomorphic Images of Groups of Finite Rank

Let π be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic π -image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2019-05, Vol.60 (3), p.373-376
Hauptverfasser: Azarov, D. N., Romanovskii, N. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let π be a finite set of primes. We prove that each soluble group of finite rank contains a finite index subgroup whose every finite homomorphic π -image is nilpotent. A similar assertion is proved for a finitely generated group of finite rank. These statements are obtained as a consequence of the following result of the article: Each soluble pro- π -group of finite rank has an open normal pronilpotent subgroup.
ISSN:0037-4466
1573-9260
DOI:10.1134/S0037446619030017