Geodesic Currents and Counting Problems
For every positive, continuous and homogeneous function f on the space of currents on a compact surface Σ ¯ , and for every compactly supported filling current α , we compute as L → ∞ , the number of mapping classes ϕ so that f ( ϕ ( α ) ) ≤ L . As an application, when the surface in question is clo...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2019-06, Vol.29 (3), p.871-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 889 |
---|---|
container_issue | 3 |
container_start_page | 871 |
container_title | Geometric and functional analysis |
container_volume | 29 |
creator | Rafi, Kasra Souto, Juan |
description | For every positive, continuous and homogeneous function
f
on the space of currents on a compact surface
Σ
¯
, and for every compactly supported filling current
α
, we compute as
L
→
∞
, the number of mapping classes
ϕ
so that
f
(
ϕ
(
α
)
)
≤
L
. As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric. |
doi_str_mv | 10.1007/s00039-019-00502-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239742986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239742986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-67b0a86690da5e883cbfce3cf6f7c266912af2bb8cf72fcc330b3eeb989f7d5f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8FD56ik6T5OkrRVVjQg4K3kKTJ0mW3XZP24L83WsGbh2GG4Xln4EHoksANAZC3GQCYxkBKAQeK5RFakJoCVlrCcZmBCFzX7P0UneW8LTjnNV-g61UY2pA7XzVTSqEfc2X7tmqGqR-7flO9pMHtwj6fo5Nodzlc_PYlenu4f20e8fp59dTcrbFnRI9YSAdWCaGhtTwoxbyLPjAfRZSelj2hNlLnlI-SRu8ZA8dCcFrpKFse2RJdzXcPafiYQh7NdphSX14aSpmWNdVKFIrOlE9DzilEc0jd3qZPQ8B8CzGzEFOEmB8hRpYQm0O5wP0mpL_T_6S-AFtwYsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239742986</pqid></control><display><type>article</type><title>Geodesic Currents and Counting Problems</title><source>Springer Nature - Complete Springer Journals</source><creator>Rafi, Kasra ; Souto, Juan</creator><creatorcontrib>Rafi, Kasra ; Souto, Juan</creatorcontrib><description>For every positive, continuous and homogeneous function
f
on the space of currents on a compact surface
Σ
¯
, and for every compactly supported filling current
α
, we compute as
L
→
∞
, the number of mapping classes
ϕ
so that
f
(
ϕ
(
α
)
)
≤
L
. As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric.</description><identifier>ISSN: 1016-443X</identifier><identifier>EISSN: 1420-8970</identifier><identifier>DOI: 10.1007/s00039-019-00502-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Continuity (mathematics) ; Mapping ; Mathematics ; Mathematics and Statistics</subject><ispartof>Geometric and functional analysis, 2019-06, Vol.29 (3), p.871-889</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-67b0a86690da5e883cbfce3cf6f7c266912af2bb8cf72fcc330b3eeb989f7d5f3</citedby><cites>FETCH-LOGICAL-c319t-67b0a86690da5e883cbfce3cf6f7c266912af2bb8cf72fcc330b3eeb989f7d5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00039-019-00502-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00039-019-00502-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Rafi, Kasra</creatorcontrib><creatorcontrib>Souto, Juan</creatorcontrib><title>Geodesic Currents and Counting Problems</title><title>Geometric and functional analysis</title><addtitle>Geom. Funct. Anal</addtitle><description>For every positive, continuous and homogeneous function
f
on the space of currents on a compact surface
Σ
¯
, and for every compactly supported filling current
α
, we compute as
L
→
∞
, the number of mapping classes
ϕ
so that
f
(
ϕ
(
α
)
)
≤
L
. As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric.</description><subject>Analysis</subject><subject>Continuity (mathematics)</subject><subject>Mapping</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1016-443X</issn><issn>1420-8970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU8FD56ik6T5OkrRVVjQg4K3kKTJ0mW3XZP24L83WsGbh2GG4Xln4EHoksANAZC3GQCYxkBKAQeK5RFakJoCVlrCcZmBCFzX7P0UneW8LTjnNV-g61UY2pA7XzVTSqEfc2X7tmqGqR-7flO9pMHtwj6fo5Nodzlc_PYlenu4f20e8fp59dTcrbFnRI9YSAdWCaGhtTwoxbyLPjAfRZSelj2hNlLnlI-SRu8ZA8dCcFrpKFse2RJdzXcPafiYQh7NdphSX14aSpmWNdVKFIrOlE9DzilEc0jd3qZPQ8B8CzGzEFOEmB8hRpYQm0O5wP0mpL_T_6S-AFtwYsA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Rafi, Kasra</creator><creator>Souto, Juan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Geodesic Currents and Counting Problems</title><author>Rafi, Kasra ; Souto, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-67b0a86690da5e883cbfce3cf6f7c266912af2bb8cf72fcc330b3eeb989f7d5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Continuity (mathematics)</topic><topic>Mapping</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rafi, Kasra</creatorcontrib><creatorcontrib>Souto, Juan</creatorcontrib><collection>CrossRef</collection><jtitle>Geometric and functional analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rafi, Kasra</au><au>Souto, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geodesic Currents and Counting Problems</atitle><jtitle>Geometric and functional analysis</jtitle><stitle>Geom. Funct. Anal</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>29</volume><issue>3</issue><spage>871</spage><epage>889</epage><pages>871-889</pages><issn>1016-443X</issn><eissn>1420-8970</eissn><abstract>For every positive, continuous and homogeneous function
f
on the space of currents on a compact surface
Σ
¯
, and for every compactly supported filling current
α
, we compute as
L
→
∞
, the number of mapping classes
ϕ
so that
f
(
ϕ
(
α
)
)
≤
L
. As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00039-019-00502-7</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1016-443X |
ispartof | Geometric and functional analysis, 2019-06, Vol.29 (3), p.871-889 |
issn | 1016-443X 1420-8970 |
language | eng |
recordid | cdi_proquest_journals_2239742986 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Continuity (mathematics) Mapping Mathematics Mathematics and Statistics |
title | Geodesic Currents and Counting Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geodesic%20Currents%20and%20Counting%20Problems&rft.jtitle=Geometric%20and%20functional%20analysis&rft.au=Rafi,%20Kasra&rft.date=2019-06-01&rft.volume=29&rft.issue=3&rft.spage=871&rft.epage=889&rft.pages=871-889&rft.issn=1016-443X&rft.eissn=1420-8970&rft_id=info:doi/10.1007/s00039-019-00502-7&rft_dat=%3Cproquest_cross%3E2239742986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239742986&rft_id=info:pmid/&rfr_iscdi=true |