Geodesic Currents and Counting Problems

For every positive, continuous and homogeneous function f on the space of currents on a compact surface Σ ¯ , and for every compactly supported filling current α , we compute as L → ∞ , the number of mapping classes ϕ so that f ( ϕ ( α ) ) ≤ L . As an application, when the surface in question is clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometric and functional analysis 2019-06, Vol.29 (3), p.871-889
Hauptverfasser: Rafi, Kasra, Souto, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For every positive, continuous and homogeneous function f on the space of currents on a compact surface Σ ¯ , and for every compactly supported filling current α , we compute as L → ∞ , the number of mapping classes ϕ so that f ( ϕ ( α ) ) ≤ L . As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric.
ISSN:1016-443X
1420-8970
DOI:10.1007/s00039-019-00502-7