Geodesic Currents and Counting Problems
For every positive, continuous and homogeneous function f on the space of currents on a compact surface Σ ¯ , and for every compactly supported filling current α , we compute as L → ∞ , the number of mapping classes ϕ so that f ( ϕ ( α ) ) ≤ L . As an application, when the surface in question is clo...
Gespeichert in:
Veröffentlicht in: | Geometric and functional analysis 2019-06, Vol.29 (3), p.871-889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For every positive, continuous and homogeneous function
f
on the space of currents on a compact surface
Σ
¯
, and for every compactly supported filling current
α
, we compute as
L
→
∞
, the number of mapping classes
ϕ
so that
f
(
ϕ
(
α
)
)
≤
L
. As an application, when the surface in question is closed, we prove a lattice counting theorem for Teichmüller space equipped with the Thurston metric. |
---|---|
ISSN: | 1016-443X 1420-8970 |
DOI: | 10.1007/s00039-019-00502-7 |