Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings
A module M is called dual automorphism invariant if whenever X 1 and X 2 are small submodules of M , then each epimorphism f : M / X 1 → M / X 2 lifts to an endomorphism g of M . A module M is said to be d-square free (dual square free) if whenever some factor module of M is isomorphic to N 2 for a...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2019-05, Vol.60 (3), p.490-496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 496 |
---|---|
container_issue | 3 |
container_start_page | 490 |
container_title | Siberian mathematical journal |
container_volume | 60 |
creator | Kuratomi, Y. |
description | A module
M
is called dual automorphism invariant if whenever
X
1
and
X
2
are small submodules of
M
, then each epimorphism
f
:
M
/
X
1
→
M
/
X
2
lifts to an endomorphism
g
of
M
. A module
M
is said to be d-square free (dual square free) if whenever some factor module of
M
is isomorphic to
N
2
for a module
N
then
N
= 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module
M
over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g.,
M
is a finitely generated module),
M
is dual automorphism invariant iff
M
is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective. |
doi_str_mv | 10.1134/S003744661903011X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2239742756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2239742756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cadcc027c19772602cc4c16c832335c8766291d0667f735468f0ef8d2c5891ea3</originalsourceid><addsrcrecordid>eNp1kE9LAzEUxIMoWKsfwFvA8-p7STbZPZbWP4WKYBW8LSGb1JTuZk12Bb-9Wyp4EE_vML-ZeQwhlwjXiFzcrAG4EkJKLIED4tsRmWCueFYyCcdkspezvX5KzlLaAiCALCdktbAmNF1IvvehTTQ4uhj0js6GPjQhdu8-NXTZfuroddvTx1APOztinzbStW18Z6OzpqfPvt2kc3Li9C7Zi587Ja93ty_zh2z1dL-cz1aZ4Vz0mdG1McCUwVKp8T1mjDAoTcEZ57kplJSsxBqkVE7xXMjCgXVFzUxelGg1n5KrQ24Xw8dgU19twxDbsbJijJdKMJXLkcIDZWJIKVpXddE3On5VCNV-tOrPaKOHHTxpZNuNjb_J_5u-AcH8bZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2239742756</pqid></control><display><type>article</type><title>Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kuratomi, Y.</creator><creatorcontrib>Kuratomi, Y.</creatorcontrib><description>A module
M
is called dual automorphism invariant if whenever
X
1
and
X
2
are small submodules of
M
, then each epimorphism
f
:
M
/
X
1
→
M
/
X
2
lifts to an endomorphism
g
of
M
. A module
M
is said to be d-square free (dual square free) if whenever some factor module of
M
is isomorphic to
N
2
for a module
N
then
N
= 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module
M
over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g.,
M
is a finitely generated module),
M
is dual automorphism invariant iff
M
is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S003744661903011X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Automorphisms ; Invariants ; Mathematics ; Mathematics and Statistics ; Modules</subject><ispartof>Siberian mathematical journal, 2019-05, Vol.60 (3), p.490-496</ispartof><rights>Pleiades Publishing, Inc. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c334t-cadcc027c19772602cc4c16c832335c8766291d0667f735468f0ef8d2c5891ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S003744661903011X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S003744661903011X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kuratomi, Y.</creatorcontrib><title>Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>A module
M
is called dual automorphism invariant if whenever
X
1
and
X
2
are small submodules of
M
, then each epimorphism
f
:
M
/
X
1
→
M
/
X
2
lifts to an endomorphism
g
of
M
. A module
M
is said to be d-square free (dual square free) if whenever some factor module of
M
is isomorphic to
N
2
for a module
N
then
N
= 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module
M
over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g.,
M
is a finitely generated module),
M
is dual automorphism invariant iff
M
is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.</description><subject>Automorphisms</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Modules</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEUxIMoWKsfwFvA8-p7STbZPZbWP4WKYBW8LSGb1JTuZk12Bb-9Wyp4EE_vML-ZeQwhlwjXiFzcrAG4EkJKLIED4tsRmWCueFYyCcdkspezvX5KzlLaAiCALCdktbAmNF1IvvehTTQ4uhj0js6GPjQhdu8-NXTZfuroddvTx1APOztinzbStW18Z6OzpqfPvt2kc3Li9C7Zi587Ja93ty_zh2z1dL-cz1aZ4Vz0mdG1McCUwVKp8T1mjDAoTcEZ57kplJSsxBqkVE7xXMjCgXVFzUxelGg1n5KrQ24Xw8dgU19twxDbsbJijJdKMJXLkcIDZWJIKVpXddE3On5VCNV-tOrPaKOHHTxpZNuNjb_J_5u-AcH8bZw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kuratomi, Y.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings</title><author>Kuratomi, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cadcc027c19772602cc4c16c832335c8766291d0667f735468f0ef8d2c5891ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Automorphisms</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Modules</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuratomi, Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuratomi, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>60</volume><issue>3</issue><spage>490</spage><epage>496</epage><pages>490-496</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>A module
M
is called dual automorphism invariant if whenever
X
1
and
X
2
are small submodules of
M
, then each epimorphism
f
:
M
/
X
1
→
M
/
X
2
lifts to an endomorphism
g
of
M
. A module
M
is said to be d-square free (dual square free) if whenever some factor module of
M
is isomorphic to
N
2
for a module
N
then
N
= 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module
M
over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g.,
M
is a finitely generated module),
M
is dual automorphism invariant iff
M
is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S003744661903011X</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2019-05, Vol.60 (3), p.490-496 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2239742756 |
source | SpringerLink Journals - AutoHoldings |
subjects | Automorphisms Invariants Mathematics Mathematics and Statistics Modules |
title | Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A05%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decompositions%20of%20Dual%20Automorphism%20Invariant%20Modules%20over%20Semiperfect%20Rings&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Kuratomi,%20Y.&rft.date=2019-05-01&rft.volume=60&rft.issue=3&rft.spage=490&rft.epage=496&rft.pages=490-496&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S003744661903011X&rft_dat=%3Cproquest_cross%3E2239742756%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2239742756&rft_id=info:pmid/&rfr_iscdi=true |