Decompositions of Dual Automorphism Invariant Modules over Semiperfect Rings
A module M is called dual automorphism invariant if whenever X 1 and X 2 are small submodules of M , then each epimorphism f : M / X 1 → M / X 2 lifts to an endomorphism g of M . A module M is said to be d-square free (dual square free) if whenever some factor module of M is isomorphic to N 2 for a...
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2019-05, Vol.60 (3), p.490-496 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A module
M
is called dual automorphism invariant if whenever
X
1
and
X
2
are small submodules of
M
, then each epimorphism
f
:
M
/
X
1
→
M
/
X
2
lifts to an endomorphism
g
of
M
. A module
M
is said to be d-square free (dual square free) if whenever some factor module of
M
is isomorphic to
N
2
for a module
N
then
N
= 0. We show that each dual automorphism invariant module over a semiperfect ring which is a small epimorphic image of a projective lifting module is a direct sum of cyclic indecomposable d-square free modules. Moreover, we prove that for each module
M
over a semiperfect ring which is a small epimorphic image of a projective lifting module (e.g.,
M
is a finitely generated module),
M
is dual automorphism invariant iff
M
is pseudoprojective. Also, we give the necessary and sufficient conditions for a dual automorphism invariant module over a right perfect ring to be quasiprojective. |
---|---|
ISSN: | 0037-4466 1573-9260 |
DOI: | 10.1134/S003744661903011X |