Experimental Methods for Constructing MDS Matrices of a Special Form
MDS matrices are widely used as a diffusion primitive in the construction of block type encryption algorithms and hash functions (such as AES and GOST 34.12-2015). The matrices with the maximum number of 1s and minimum number of different elements are important for more efficient realizations of the...
Gespeichert in:
Veröffentlicht in: | Journal of applied and industrial mathematics 2019-04, Vol.13 (2), p.302-309 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MDS matrices are widely used as a diffusion primitive in the construction of block type encryption algorithms and hash functions (such as AES and GOST 34.12-2015). The matrices with the maximum number of 1s and minimum number of different elements are important for more efficient realizations of the matrix-vector multiplication. The article presents a new method for the MDS testing of matrices over finite fields and shows its application to the (8 × 8)-matrices of a special form with many 1s and few different elements; these matrices were introduced by Junod and Vaudenay. For the proposed method we obtain some theoretical and experimental estimates of effectiveness. Moreover, the article comprises a list of some MDS matrices of the above-indicated type. |
---|---|
ISSN: | 1990-4789 1990-4797 |
DOI: | 10.1134/S199047891902011X |