Chromatic symmetric functions and H-free graphs
Using a graph and its colorings we can define a chromatic symmetric function. Stanley’s celebrated conjecture about the e -positivity of claw-free incomparability graphs has seen several related results, including one showing ( c l a w , P 4 )-free graphs are e -positive. Here we extend the claw-fre...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2019-07, Vol.35 (4), p.815-825 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using a graph and its colorings we can define a chromatic symmetric function. Stanley’s celebrated conjecture about the
e
-positivity of claw-free incomparability graphs has seen several related results, including one showing (
c
l
a
w
,
P
4
)-free graphs are
e
-positive. Here we extend the claw-free idea to general graphs and consider the
e
-positivity question for
H
-free graphs where
H
=
{
c
l
a
w
,
F
}
and
H
=
{
claw
,
F
,
co-
F
}, where
F
is a four-vertex graph. We settle the question for all cases except
H
=
{
claw, co-diamond
}, and we provide some partial results in that case. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-019-02034-1 |