A novel product recommendation model consolidating price, trust and online reviews

Purpose The purpose of this paper is to propose a model for product recommendation to improve the accuracy of recommendation based on the current search engines used in e-commerce platforms like Tmall.com. Design/methodology/approach First, the proposed model comprehensively considers price, trust a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kybernetes 2019-06, Vol.48 (6), p.1355-1372
Hauptverfasser: Huang, Ying, Wang, Nu-nu, Zhang, Hongyu, Wang, Jianqiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose The purpose of this paper is to propose a model for product recommendation to improve the accuracy of recommendation based on the current search engines used in e-commerce platforms like Tmall.com. Design/methodology/approach First, the proposed model comprehensively considers price, trust and online reviews, which all represent critical factors in consumers’ purchasing decisions. Second, the model introduces the quantization methods for these criteria incorporating fuzzy theory. Third, the model uses a distance measure between two single valued neutrosophic sets based on the prioritized average operator to consolidate the influences of positive, neutral and negative comments. Finally, the model uses multi-criteria decision-making methods to integrate the influences of price, trust and online reviews on purchasing decisions to generate recommendations. Findings To demonstrate the feasibility and efficiency of the proposed model, a case study is conducted based on Tmall.com. The results of case study indicate that the recommendations of our model perform better than those of current search engines of Tmall.com. The proposed model can significantly improve the accuracy of product recommendations based on search engines. Originality/value The product recommendation method can meet the critical challenge from the search engines on e-commerce platforms. In addition, the proposed method could be used in practice to develop a new application for e-commerce platforms.
ISSN:0368-492X
1758-7883
DOI:10.1108/K-03-2018-0143