Edge‐coloring linear hypergraphs with medium‐sized edges

Motivated by the Erdos̋‐Faber‐Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper‐edge sizes are bounded between i and Ci,ϵn inclusive, then there is a list edge coloring using (1+ϵ)ni−1 colors. The dependence on n in the upper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2019-08, Vol.55 (1), p.153-159
Hauptverfasser: Faber, Vance, Harris, David G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the Erdos̋‐Faber‐Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper‐edge sizes are bounded between i and Ci,ϵn inclusive, then there is a list edge coloring using (1+ϵ)ni−1 colors. The dependence on n in the upper bound is optimal (up to the value of Ci,ϵ).
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.20843