Edge‐coloring linear hypergraphs with medium‐sized edges
Motivated by the Erdos̋‐Faber‐Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper‐edge sizes are bounded between i and Ci,ϵn inclusive, then there is a list edge coloring using (1+ϵ)ni−1 colors. The dependence on n in the upper...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2019-08, Vol.55 (1), p.153-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the Erdos̋‐Faber‐Lovász (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We show that if the hyper‐edge sizes are bounded between i and Ci,ϵn inclusive, then there is a list edge coloring using (1+ϵ)ni−1 colors. The dependence on n in the upper bound is optimal (up to the value of Ci,ϵ). |
---|---|
ISSN: | 1042-9832 1098-2418 |
DOI: | 10.1002/rsa.20843 |