Deep learning for spatio‐temporal modeling: Dynamic traffic flows and high frequency trading
Deep learning applies hierarchical layers of hidden variables to construct nonlinear high dimensional predictors. Our goal is to develop and train deep learning architectures for spatio‐temporal modeling. Training a deep architecture is achieved by stochastic gradient descent and dropout for paramet...
Gespeichert in:
Veröffentlicht in: | Applied stochastic models in business and industry 2019-05, Vol.35 (3), p.788-807 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep learning applies hierarchical layers of hidden variables to construct nonlinear high dimensional predictors. Our goal is to develop and train deep learning architectures for spatio‐temporal modeling. Training a deep architecture is achieved by stochastic gradient descent and dropout for parameter regularization with a goal of minimizing out‐of‐sample predictive mean squared error. To illustrate our methodology, we first predict the sharp discontinuities in traffic flow data, and secondly, we develop a classification rule to predict short‐term futures market prices using order book depth. Finally, we conclude with directions for future research. |
---|---|
ISSN: | 1524-1904 1526-4025 |
DOI: | 10.1002/asmb.2399 |