Monte Carlo and Quasi-Monte Carlo Density Estimation via Conditioning

Estimating the unknown density from which a given independent sample originates is more difficult than estimating the mean, in the sense that for the best popular non-parametric density estimators, the mean integrated square error converges more slowly than at the canonical rate of \(\mathcal{O}(1/n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-09
Hauptverfasser: L'Ecuyer, Pierre, Puchhammer, Florian, Amal Ben Abdellah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimating the unknown density from which a given independent sample originates is more difficult than estimating the mean, in the sense that for the best popular non-parametric density estimators, the mean integrated square error converges more slowly than at the canonical rate of \(\mathcal{O}(1/n)\). When the sample is generated from a simulation model and we have control over how this is done, we can do better. We examine an approach in which conditional Monte Carlo yields, under certain conditions, a random conditional density which is an unbiased estimator of the true density at any point. By averaging independent replications, we obtain a density estimator that converges at a faster rate than the usual ones. Moreover, combining this new type of estimator with randomized quasi-Monte Carlo to generate the samples typically brings a larger improvement on the error and convergence rate than for the usual estimators, because the new estimator is smoother as a function of the underlying uniform random numbers.
ISSN:2331-8422