Effect of the Texture and Acidity of a Zeolite-Containing Support on the Activity and Selectivity of NiMoS Catalysts in Hydrogenation and Hydrocracking Reactions
Supports based on pseudoboehmite, ultrastable zeolite Y, and ZSM-5 with different silica ratio and concentration of acid sites are prepared. NiMoS catalysts are synthesized by the incipient wetness impregnation of the prepared supports by the joint solution of H 3 PMo 12 O 40 and nickel citrate. The...
Gespeichert in:
Veröffentlicht in: | Petroleum chemistry 2019-05, Vol.59 (5), p.511-517 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Supports based on pseudoboehmite, ultrastable zeolite Y, and ZSM-5 with different silica ratio and concentration of acid sites are prepared. NiMoS catalysts are synthesized by the incipient wetness impregnation of the prepared supports by the joint solution of H
3
PMo
12
O
40
and nickel citrate. The composition and properties of the supports and catalysts are studied by low-temperature nitrogen adsorption, ammonia temperature-programmed desorption, IR spectroscopy of pyridine adsorption, and high-resolution transmission electron microscopy. Catalytic properties are investigated in dibenzothiophene hydrodesulfurization (HDS), naphthalene hydrogenation (HYD), and hexadecane hydrocracking (HC) concurrent reactions in a flow unit equipped with a microreactor. It is shown that the HDS activity of the synthesized samples declines as the dispersity of active-phase particles decreases in correlation with a change in the surface area of support mesopores. It is shown that the NiMo/ZSM-5/23 catalyst exhibits a high activity in naphthalene HYD and subsequent reactions of tetralin and decalin naphthene ring opening and hexadecane HC. It is found that the activity of zeolite-containing catalysts in naphthalene HYD grows with the proportion of Brønsted acid sites. |
---|---|
ISSN: | 0965-5441 1555-6239 |
DOI: | 10.1134/S0965544119050025 |