Predicting TED Talk Ratings from Language and Prosody

We use the largest open repository of public speaking---TED Talks---to predict the ratings of the online viewers. Our dataset contains over 2200 TED Talk transcripts (includes over 200 thousand sentences), audio features and the associated meta information including about 5.5 Million ratings from sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Md Iftekhar Tanveer, Md Kamrul Hassan, Gildea, Daniel, M Ehsan Hoque
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use the largest open repository of public speaking---TED Talks---to predict the ratings of the online viewers. Our dataset contains over 2200 TED Talk transcripts (includes over 200 thousand sentences), audio features and the associated meta information including about 5.5 Million ratings from spontaneous visitors of the website. We propose three neural network architectures and compare with statistical machine learning. Our experiments reveal that it is possible to predict all the 14 different ratings with an average AUC of 0.83 using the transcripts and prosody features only. The dataset and the complete source code is available for further analysis.
ISSN:2331-8422