Finding a Shortest Non-zero Path in Group-Labeled Graphs
We study a constrained shortest path problem in group-labeled graphs with nonnegative edge length, called the shortest non-zero path problem. Depending on the group in question, this problem includes two types of tractable variants in undirected graphs: one is the parity-constrained shortest path/cy...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study a constrained shortest path problem in group-labeled graphs with nonnegative edge length, called the shortest non-zero path problem. Depending on the group in question, this problem includes two types of tractable variants in undirected graphs: one is the parity-constrained shortest path/cycle problem, and the other is computing a shortest noncontractible cycle in surface-embedded graphs. For the shortest non-zero path problem with respect to finite abelian groups, Kobayashi and Toyooka (2017) proposed a randomized, pseudopolynomial-time algorithm via permanent computation. For a slightly more general class of groups, Yamaguchi (2016) showed a reduction of the problem to the weighted linear matroid parity problem. In particular, some cases are solved in strongly polynomial time via the reduction with the aid of a deterministic, polynomial-time algorithm for the weighted linear matroid parity problem developed by Iwata and Kobayashi (2021), which generalizes a well-known fact that the parity-constrained shortest path problem is solved via weighted matching. In this paper, as the first general solution independent of the group, we present a rather simple, deterministic, and strongly polynomial-time algorithm for the shortest non-zero path problem. The algorithm is based on Dijkstra's algorithm for the unconstrained shortest path problem and Edmonds' blossom shrinking technique in matching algorithms; this approach is inspired by Derigs' faster algorithm (1985) for the parity-constrained shortest path problem via a reduction to weighted matching. Furthermore, we improve our algorithm so that it does not require explicit blossom shrinking, and make the computational time match Derigs' one. In the speeding-up step, a dual linear programming formulation of the equivalent problem based on potential maximization for the unconstrained shortest path problem plays a key role. |
---|---|
ISSN: | 2331-8422 |