On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials

In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2019-10, Vol.49, p.137-158
Hauptverfasser: Sui, Shiyou, Yang, Jihua, Zhao, Liqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 158
container_issue
container_start_page 137
container_title Nonlinear analysis: real world applications
container_volume 49
creator Sui, Shiyou
Yang, Jihua
Zhao, Liqin
description In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.
doi_str_mv 10.1016/j.nonrwa.2019.03.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237861617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181830734X</els_id><sourcerecordid>2237861617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</originalsourceid><addsrcrecordid>eNp9UMtKxDAULaLg8w9cBFy3Jk0mbTeCii8YcKNuQ5rcjhnbpCapMju_Qf_QLzHD6NbVvZfz4p4sOya4IJjw02VhnfXvsigxaQpMC4zJVrZH6qrOZxVpttPOeJ2TktS72X4Iy0SoCCV72ee9RfEZkJ2GFjxyHerNYCJSK9VDQJ3zaAEWvFFo7uKL_P74enJ9BO8lCqsQYUDSanThFlpa95bgB_kCNvyBk9XJdgQfJ9_KaFyCUshoQMG7CYDC4Fx8RqPrV9YNRvbhMNvp0oCj33mQPV5fPVze5vP7m7vL83muKGUxJ5ozqjBULZV61sp0Ng0ueVO1MyANqJLKptMMK6CM4VJxTTHwWcc4sK7q6EF2svEdvXudIESxdJO3KVKUJa1qTjipEottWMq7EDx0YvRmkH4lCBbr9sVSbNoX6_YFpiKVm2RnGxmkD94MeBGUAatAGw8qCu3M_wY_wxqVmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237861617</pqid></control><display><type>article</type><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</creator><creatorcontrib>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</creatorcontrib><description>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2019.03.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bifurcations ; Competitive advantage ; Economic models ; First order Melnikov function ; Limit cycle ; Linear transformations ; Picard–Fuchs equation ; Piecewise smooth perturbation ; Polynomials ; Upper bounds</subject><ispartof>Nonlinear analysis: real world applications, 2019-10, Vol.49, p.137-158</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</citedby><cites>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2019.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Sui, Shiyou</creatorcontrib><creatorcontrib>Yang, Jihua</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><title>Nonlinear analysis: real world applications</title><description>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</description><subject>Bifurcations</subject><subject>Competitive advantage</subject><subject>Economic models</subject><subject>First order Melnikov function</subject><subject>Limit cycle</subject><subject>Linear transformations</subject><subject>Picard–Fuchs equation</subject><subject>Piecewise smooth perturbation</subject><subject>Polynomials</subject><subject>Upper bounds</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAULaLg8w9cBFy3Jk0mbTeCii8YcKNuQ5rcjhnbpCapMju_Qf_QLzHD6NbVvZfz4p4sOya4IJjw02VhnfXvsigxaQpMC4zJVrZH6qrOZxVpttPOeJ2TktS72X4Iy0SoCCV72ee9RfEZkJ2GFjxyHerNYCJSK9VDQJ3zaAEWvFFo7uKL_P74enJ9BO8lCqsQYUDSanThFlpa95bgB_kCNvyBk9XJdgQfJ9_KaFyCUshoQMG7CYDC4Fx8RqPrV9YNRvbhMNvp0oCj33mQPV5fPVze5vP7m7vL83muKGUxJ5ozqjBULZV61sp0Ng0ueVO1MyANqJLKptMMK6CM4VJxTTHwWcc4sK7q6EF2svEdvXudIESxdJO3KVKUJa1qTjipEottWMq7EDx0YvRmkH4lCBbr9sVSbNoX6_YFpiKVm2RnGxmkD94MeBGUAatAGw8qCu3M_wY_wxqVmA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Sui, Shiyou</creator><creator>Yang, Jihua</creator><creator>Zhao, Liqin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><author>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcations</topic><topic>Competitive advantage</topic><topic>Economic models</topic><topic>First order Melnikov function</topic><topic>Limit cycle</topic><topic>Linear transformations</topic><topic>Picard–Fuchs equation</topic><topic>Piecewise smooth perturbation</topic><topic>Polynomials</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Shiyou</creatorcontrib><creatorcontrib>Yang, Jihua</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Shiyou</au><au>Yang, Jihua</au><au>Zhao, Liqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-10</date><risdate>2019</risdate><volume>49</volume><spage>137</spage><epage>158</epage><pages>137-158</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2019.03.001</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1468-1218
ispartof Nonlinear analysis: real world applications, 2019-10, Vol.49, p.137-158
issn 1468-1218
1878-5719
language eng
recordid cdi_proquest_journals_2237861617
source ScienceDirect Journals (5 years ago - present)
subjects Bifurcations
Competitive advantage
Economic models
First order Melnikov function
Limit cycle
Linear transformations
Picard–Fuchs equation
Piecewise smooth perturbation
Polynomials
Upper bounds
title On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20limit%20cycles%20for%20generic%20Lotka%E2%80%93Volterra%20system%20and%20Bogdanov%E2%80%93Takens%20system%20under%20perturbations%20of%20piecewise%20smooth%20polynomials&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Sui,%20Shiyou&rft.date=2019-10&rft.volume=49&rft.spage=137&rft.epage=158&rft.pages=137-158&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2019.03.001&rft_dat=%3Cproquest_cross%3E2237861617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237861617&rft_id=info:pmid/&rft_els_id=S146812181830734X&rfr_iscdi=true