On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials
In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations,...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2019-10, Vol.49, p.137-158 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 158 |
---|---|
container_issue | |
container_start_page | 137 |
container_title | Nonlinear analysis: real world applications |
container_volume | 49 |
creator | Sui, Shiyou Yang, Jihua Zhao, Liqin |
description | In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5. |
doi_str_mv | 10.1016/j.nonrwa.2019.03.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2237861617</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S146812181830734X</els_id><sourcerecordid>2237861617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</originalsourceid><addsrcrecordid>eNp9UMtKxDAULaLg8w9cBFy3Jk0mbTeCii8YcKNuQ5rcjhnbpCapMju_Qf_QLzHD6NbVvZfz4p4sOya4IJjw02VhnfXvsigxaQpMC4zJVrZH6qrOZxVpttPOeJ2TktS72X4Iy0SoCCV72ee9RfEZkJ2GFjxyHerNYCJSK9VDQJ3zaAEWvFFo7uKL_P74enJ9BO8lCqsQYUDSanThFlpa95bgB_kCNvyBk9XJdgQfJ9_KaFyCUshoQMG7CYDC4Fx8RqPrV9YNRvbhMNvp0oCj33mQPV5fPVze5vP7m7vL83muKGUxJ5ozqjBULZV61sp0Ng0ueVO1MyANqJLKptMMK6CM4VJxTTHwWcc4sK7q6EF2svEdvXudIESxdJO3KVKUJa1qTjipEottWMq7EDx0YvRmkH4lCBbr9sVSbNoX6_YFpiKVm2RnGxmkD94MeBGUAatAGw8qCu3M_wY_wxqVmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237861617</pqid></control><display><type>article</type><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</creator><creatorcontrib>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</creatorcontrib><description>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</description><identifier>ISSN: 1468-1218</identifier><identifier>EISSN: 1878-5719</identifier><identifier>DOI: 10.1016/j.nonrwa.2019.03.001</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bifurcations ; Competitive advantage ; Economic models ; First order Melnikov function ; Limit cycle ; Linear transformations ; Picard–Fuchs equation ; Piecewise smooth perturbation ; Polynomials ; Upper bounds</subject><ispartof>Nonlinear analysis: real world applications, 2019-10, Vol.49, p.137-158</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</citedby><cites>FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nonrwa.2019.03.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids></links><search><creatorcontrib>Sui, Shiyou</creatorcontrib><creatorcontrib>Yang, Jihua</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><title>Nonlinear analysis: real world applications</title><description>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</description><subject>Bifurcations</subject><subject>Competitive advantage</subject><subject>Economic models</subject><subject>First order Melnikov function</subject><subject>Limit cycle</subject><subject>Linear transformations</subject><subject>Picard–Fuchs equation</subject><subject>Piecewise smooth perturbation</subject><subject>Polynomials</subject><subject>Upper bounds</subject><issn>1468-1218</issn><issn>1878-5719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UMtKxDAULaLg8w9cBFy3Jk0mbTeCii8YcKNuQ5rcjhnbpCapMju_Qf_QLzHD6NbVvZfz4p4sOya4IJjw02VhnfXvsigxaQpMC4zJVrZH6qrOZxVpttPOeJ2TktS72X4Iy0SoCCV72ee9RfEZkJ2GFjxyHerNYCJSK9VDQJ3zaAEWvFFo7uKL_P74enJ9BO8lCqsQYUDSanThFlpa95bgB_kCNvyBk9XJdgQfJ9_KaFyCUshoQMG7CYDC4Fx8RqPrV9YNRvbhMNvp0oCj33mQPV5fPVze5vP7m7vL83muKGUxJ5ozqjBULZV61sp0Ng0ueVO1MyANqJLKptMMK6CM4VJxTTHwWcc4sK7q6EF2svEdvXudIESxdJO3KVKUJa1qTjipEottWMq7EDx0YvRmkH4lCBbr9sVSbNoX6_YFpiKVm2RnGxmkD94MeBGUAatAGw8qCu3M_wY_wxqVmA</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Sui, Shiyou</creator><creator>Yang, Jihua</creator><creator>Zhao, Liqin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201910</creationdate><title>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</title><author>Sui, Shiyou ; Yang, Jihua ; Zhao, Liqin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-1d643c0e7b3ad5bad649902697b5e19ec23a9fd40ce34402c6d30e65f46e4f7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bifurcations</topic><topic>Competitive advantage</topic><topic>Economic models</topic><topic>First order Melnikov function</topic><topic>Limit cycle</topic><topic>Linear transformations</topic><topic>Picard–Fuchs equation</topic><topic>Piecewise smooth perturbation</topic><topic>Polynomials</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sui, Shiyou</creatorcontrib><creatorcontrib>Yang, Jihua</creatorcontrib><creatorcontrib>Zhao, Liqin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis: real world applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sui, Shiyou</au><au>Yang, Jihua</au><au>Zhao, Liqin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials</atitle><jtitle>Nonlinear analysis: real world applications</jtitle><date>2019-10</date><risdate>2019</risdate><volume>49</volume><spage>137</spage><epage>158</epage><pages>137-158</pages><issn>1468-1218</issn><eissn>1878-5719</eissn><abstract>In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.nonrwa.2019.03.001</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1468-1218 |
ispartof | Nonlinear analysis: real world applications, 2019-10, Vol.49, p.137-158 |
issn | 1468-1218 1878-5719 |
language | eng |
recordid | cdi_proquest_journals_2237861617 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bifurcations Competitive advantage Economic models First order Melnikov function Limit cycle Linear transformations Picard–Fuchs equation Piecewise smooth perturbation Polynomials Upper bounds |
title | On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20number%20of%20limit%20cycles%20for%20generic%20Lotka%E2%80%93Volterra%20system%20and%20Bogdanov%E2%80%93Takens%20system%20under%20perturbations%20of%20piecewise%20smooth%20polynomials&rft.jtitle=Nonlinear%20analysis:%20real%20world%20applications&rft.au=Sui,%20Shiyou&rft.date=2019-10&rft.volume=49&rft.spage=137&rft.epage=158&rft.pages=137-158&rft.issn=1468-1218&rft.eissn=1878-5719&rft_id=info:doi/10.1016/j.nonrwa.2019.03.001&rft_dat=%3Cproquest_cross%3E2237861617%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237861617&rft_id=info:pmid/&rft_els_id=S146812181830734X&rfr_iscdi=true |