On the number of limit cycles for generic Lotka–Volterra system and Bogdanov–Takens system under perturbations of piecewise smooth polynomials

In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2019-10, Vol.49, p.137-158
Hauptverfasser: Sui, Shiyou, Yang, Jihua, Zhao, Liqin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider the bifurcation of limit cycles for generic L–V system ( ẋ=y+x2−y2±43xy,ẏ=−x+2xy) and B–T system (ẋ=y,ẏ=−x+x2) under perturbations of piecewise smooth polynomials with degree n. After linear transformation, we choose switching line y=0. By using Picard–Fuchs equations, we bound the number of zeros of first order Melnikov function which controls the number of limit cycles bifurcating from the center. It is proved that the upper bounds of the number of limit cycles (taking into account the multiplicity) for generic L–V system and B–T system are respectively 39n−72(n≥4),39,59,98(n=1,2,3) and 12n+3n2+5.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2019.03.001