Beyond \(M_{t\bar{t}}\): learning to search for a broad \(t\bar t\) resonance at the LHC

A resonance peak in the invariant mass spectrum has been the main feature of a particle at collider experiments. However, broad resonances not exhibiting such a sharp peak are generically predicted in new physics models beyond the Standard Model. Without a peak, how do we discover a broad resonance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-02
Hauptverfasser: Jung, Sunghoon, Lee, Dongsub, Ke-Pan, Xie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A resonance peak in the invariant mass spectrum has been the main feature of a particle at collider experiments. However, broad resonances not exhibiting such a sharp peak are generically predicted in new physics models beyond the Standard Model. Without a peak, how do we discover a broad resonance at colliders? We use machine learning technique to explore answers beyond common knowledge. We learn that, by applying deep neural network to the case of a \(t\bar{t}\) resonance, the invariant mass \(M_{t\bar{t}}\) is still useful, but additional information from off-resonance region, angular correlations, \(p_T\), and top jet mass are also significantly important. As a result, the improved LHC sensitivities do not depend strongly on the width. The results may also imply that the additional information can be used to improve narrow-resonance searches too. Further, we also detail how we assess machine-learned information.
ISSN:2331-8422
DOI:10.48550/arxiv.1906.02810