Reflection Characteristics of a Near-Interface Cavity in Ice at Supercritical Incidence
The long-range propagation modes in an acoustic channel under ice are basically caused by supercritical incidence. The energy distribution and transmission loss in the acoustic channel under ice are changed by a scatter in ice. The influence of a slender cylindrical cavity near and parallel to the i...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The long-range propagation modes in an acoustic channel under ice are basically caused by supercritical incidence. The energy distribution and transmission loss in the acoustic channel under ice are changed by a scatter in ice. The influence of a slender cylindrical cavity near and parallel to the ice-water interface on the sound propagation is analyzed using Fourier-Bessel series and Sommerfeld-Watson transformation. The research found that the acoustic field presents a beam in the mirror reflection direction at supercritical incidence, and the beam-width is proportional to secant of incident angle; meanwhile, the reflected coefficient is proportional to cosine of incident angle. The reflection coefficient increases with relative depth and Helmholtz number if the incident angle is a constant. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2019/2143487 |