Rough infection fronts in a random medium
We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivial dynamic critical behavior in the mean velocity,...
Gespeichert in:
Veröffentlicht in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2019-06, Vol.92 (6), p.1-11, Article 126 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study extended infection fronts advancing over a spatially uniform susceptible population by solving numerically a diffusive Kermack McKendrick SIR model with a dichotomous spatially random transmission rate, in two dimensions. We find a non-trivial dynamic critical behavior in the mean velocity, in the shape, and in the rough geometry of the displacement field of the infective front as the disorder approaches a threshold value for spatial spreading of the infection.
Graphical abstract |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2019-90582-3 |