Complete solution of the Diophantine equation $x^y+y^x=z^z

The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} > 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2019-07, Vol.69 (2), p.479-484
1. Verfasser: Cipu, Mihai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 484
container_issue 2
container_start_page 479
container_title Czechoslovak Mathematical Journal
container_volume 69
creator Cipu, Mihai
description The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} > 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
doi_str_mv 10.21136/CMJ.2018.0395-17
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2236744254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2236744254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1137-49d9c01fffa71d2c23a25edd47db3cc287e34b37b1fbdbbe149496ed023d4afb3</originalsourceid><addsrcrecordid>eNotkD1PwzAYhC0EEqXwA9giwYZS_Npv4gaJAYVvFbHAWsuObTVVGqdxIrX99aQt0w13ujs9hFwDnTAAnt7nX58TRmE6oTxLYhAnZASJYHEGCKdkRClAjCmyc3IRwpJSygGnI_KQ-1VT2c5GwVd9V_o68i7qFjZ6Ln2zUHVX1jay614dvNvNfHu3nW8ed_PdJTlzqgr26l_H5Pf15Sd_j2ffbx_50ywuhmMixsxkBQXnnBJgWMG4Yok1BoXRvCjYVFiOmgsNThutLWCGWWoNZdygcpqPyc2xt2n9urehk0vft_UwKRnjqUBkCQ4pOKaK1ofQWiebtlypdiuBygMiOSCSe0Ryj0iC4H8QAFlm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2236744254</pqid></control><display><type>article</type><title>Complete solution of the Diophantine equation $x^y+y^x=z^z</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cipu, Mihai</creator><creatorcontrib>Cipu, Mihai</creatorcontrib><description>The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} &gt; 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.</description><identifier>ISSN: 0011-4642</identifier><identifier>EISSN: 1572-9141</identifier><identifier>DOI: 10.21136/CMJ.2018.0395-17</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Diophantine equation</subject><ispartof>Czechoslovak Mathematical Journal, 2019-07, Vol.69 (2), p.479-484</ispartof><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cipu, Mihai</creatorcontrib><title>Complete solution of the Diophantine equation $x^y+y^x=z^z</title><title>Czechoslovak Mathematical Journal</title><description>The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} &gt; 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.</description><subject>Diophantine equation</subject><issn>0011-4642</issn><issn>1572-9141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkD1PwzAYhC0EEqXwA9giwYZS_Npv4gaJAYVvFbHAWsuObTVVGqdxIrX99aQt0w13ujs9hFwDnTAAnt7nX58TRmE6oTxLYhAnZASJYHEGCKdkRClAjCmyc3IRwpJSygGnI_KQ-1VT2c5GwVd9V_o68i7qFjZ6Ln2zUHVX1jay614dvNvNfHu3nW8ed_PdJTlzqgr26l_H5Pf15Sd_j2ffbx_50ywuhmMixsxkBQXnnBJgWMG4Yok1BoXRvCjYVFiOmgsNThutLWCGWWoNZdygcpqPyc2xt2n9urehk0vft_UwKRnjqUBkCQ4pOKaK1ofQWiebtlypdiuBygMiOSCSe0Ryj0iC4H8QAFlm</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Cipu, Mihai</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Complete solution of the Diophantine equation $x^y+y^x=z^z</title><author>Cipu, Mihai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1137-49d9c01fffa71d2c23a25edd47db3cc287e34b37b1fbdbbe149496ed023d4afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Diophantine equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cipu, Mihai</creatorcontrib><collection>CrossRef</collection><jtitle>Czechoslovak Mathematical Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cipu, Mihai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete solution of the Diophantine equation $x^y+y^x=z^z</atitle><jtitle>Czechoslovak Mathematical Journal</jtitle><date>2019-07-01</date><risdate>2019</risdate><volume>69</volume><issue>2</issue><spage>479</spage><epage>484</epage><pages>479-484</pages><issn>0011-4642</issn><eissn>1572-9141</eissn><abstract>The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} &gt; 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.21136/CMJ.2018.0395-17</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-4642
ispartof Czechoslovak Mathematical Journal, 2019-07, Vol.69 (2), p.479-484
issn 0011-4642
1572-9141
language eng
recordid cdi_proquest_journals_2236744254
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Diophantine equation
title Complete solution of the Diophantine equation $x^y+y^x=z^z
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A53%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20solution%20of%20the%20Diophantine%20equation%20$x%5Ey+y%5Ex=z%5Ez&rft.jtitle=Czechoslovak%20Mathematical%20Journal&rft.au=Cipu,%20Mihai&rft.date=2019-07-01&rft.volume=69&rft.issue=2&rft.spage=479&rft.epage=484&rft.pages=479-484&rft.issn=0011-4642&rft.eissn=1572-9141&rft_id=info:doi/10.21136/CMJ.2018.0395-17&rft_dat=%3Cproquest_cross%3E2236744254%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2236744254&rft_id=info:pmid/&rfr_iscdi=true