Complete solution of the Diophantine equation $x^y+y^x=z^z
The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} > 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed.
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2019-07, Vol.69 (2), p.479-484 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The triples (x, y, z) = (1,zz − 1,z), (x, y, z) = (zz − 1,1,z), where z ∈ ℕ, satisfy the equation xy + yx = zz. In this paper it is shown that the same equation has no integer solution with min{x,y,z} > 1, thus a conjecture put forward by Z. Zhang, J. Luo, P. Z. Yuan (2013) is confirmed. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2018.0395-17 |