Strongly 2-nil-clean rings with involutions

A *-ring R is strongly 2-nil-*-clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such *-rings are obtained. We prove that a *-ring R is strongly 2-nil-*-clean if and only if for all a ∈ R , a 2 ∈ R is strongly nil-*-clean, if and only i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2019-06, Vol.69 (2), p.317-330
Hauptverfasser: Chen, Huanyin, Abdolyousefi, Marjan Sheibani
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A *-ring R is strongly 2-nil-*-clean if every element in R is the sum of two projections and a nilpotent that commute. Fundamental properties of such *-rings are obtained. We prove that a *-ring R is strongly 2-nil-*-clean if and only if for all a ∈ R , a 2 ∈ R is strongly nil-*-clean, if and only if for any a ∈ R there exists a *-tripotent e ∈ R such that a − e ∈ R is nilpotent and ea = ae , if and only if R is a strongly *-clean SN ring, if and only if R is abelian, J ( R ) is nil and R/J ( R ) is *-tripotent. Furthermore, we explore the structure of such rings and prove that a *-ring R is strongly 2-nil-*-clean if and only if R is abelian and R ≅ R 1 , R 2 or R 1 × R 2 , where R 1 / J ( R 1 ) is a *-Boolean ring and J ( R 1 ) is nil, R 2 / J ( R 2 ) is a *-Yaqub ring and J ( R 2 ) is nil. The uniqueness of projections of such rings are thereby investigated.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2018.0291-17