Cross sections to flows via intrinsically harmonic forms
We establish a new criterion for the existence of a global cross section to a non-singular volume-preserving flow on a compact manifold. Namely, if \(\Phi\) is a non-singular smooth flow on a compact, connected manifold \(M\) with a smooth invariant volume form \(\Omega\), then \(\Phi\) admits a glo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-06 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a new criterion for the existence of a global cross section to a non-singular volume-preserving flow on a compact manifold. Namely, if \(\Phi\) is a non-singular smooth flow on a compact, connected manifold \(M\) with a smooth invariant volume form \(\Omega\), then \(\Phi\) admits a global cross section if and only if the \((n-1)\)-form \(i_X \Omega\) is intrinsically harmonic, that is, harmonic with respect to some Riemannian metric on \(M\). |
---|---|
ISSN: | 2331-8422 |