Cross sections to flows via intrinsically harmonic forms

We establish a new criterion for the existence of a global cross section to a non-singular volume-preserving flow on a compact manifold. Namely, if \(\Phi\) is a non-singular smooth flow on a compact, connected manifold \(M\) with a smooth invariant volume form \(\Omega\), then \(\Phi\) admits a glo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-06
1. Verfasser: Simić, Slobodan N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish a new criterion for the existence of a global cross section to a non-singular volume-preserving flow on a compact manifold. Namely, if \(\Phi\) is a non-singular smooth flow on a compact, connected manifold \(M\) with a smooth invariant volume form \(\Omega\), then \(\Phi\) admits a global cross section if and only if the \((n-1)\)-form \(i_X \Omega\) is intrinsically harmonic, that is, harmonic with respect to some Riemannian metric on \(M\).
ISSN:2331-8422