Highly concentrated and stabilizer-free transition-metal dichalcogenide dispersions in low-boiling point solvent for flexible electronics
Liquid-phase exfoliation has provided an efficient and scalable route to obtain dispersions of layered materials. Dispersions in low-boiling solvents facilitate the ease of processing; however, the challenge of obtaining them at high concentrations still prevails. Herein, the use of 2-butanone (B.P....
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-06, Vol.11 (22), p.1746-1755 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Liquid-phase exfoliation has provided an efficient and scalable route to obtain dispersions of layered materials. Dispersions in low-boiling solvents facilitate the ease of processing; however, the challenge of obtaining them at high concentrations still prevails. Herein, the use of 2-butanone (B.P. 80 °C) as an effective solvent for the exfoliation of transition-metal dichalcogenides is reported for the first time. Among these, MoS
2
was studied in detail to maximize the dispersion concentrations, reaching values up to 5.5 mg ml
−1
without the use of any stabilizer. This exceptional efficiency of 2-butanone to exfoliate and stabilize the dispersions at high concentrations enabled the size separation of nanosheets by liquid cascade centrifugation. Extensive characterization by spectroscopic and microscopic techniques revealed the efficacy of the proposed process in separating mono- and few-layers. To showcase the utility of this low-boiling point solvent, a flexible photodetector was fabricated by spray-coating the dispersions on a polyethylene terephthalate substrate. The device exhibited a fast response time ( |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c9nr02019e |